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Abstract— A recent approach uses linear programming
(LP) to compute continuous and piecewise affine (CPA)
Lyapunov functions for arbitrary switched linear systems.
Such a Lyapunov function is a common Lyapunov function
(CLF) for all the respective linear subsystems and asserts
the exponential stability of the equilibrium at the origin for
the switched system. In this letter, we prove that this LP
approach is constructive, i.e., that it succeeds in computing
a Lyapunov function for the switched system, whenever the
origin is exponentially stable.

Index Terms— Common Lyapunov function, Linear Pro-
gramming, Linear systems, Switched Systems.

I. INTRODUCTION

IN [1] a linear programming (LP) approach to compute a
common Lyapunov function (CLF) for a finite set of linear

systems

ẋ = Aix, Ai ∈ Rn×n, i = 1, 2, . . . , N, (1)

was presented. It is well known, that the existence of such
a CLF is equivalent to the exponential stability of the equi-
librium at the origin for the corresponding arbitrary switched
system ẋ ∈ co{Aix}; cf. e.g. [7], [14], [22], [23] for some
general references for switched systems and stability. We talk
about a CLF for the systems (1) and a Lyapunov function for
the (arbitrary) switched system (1) interchangeably.

The origin is an exponentially stable equilibrium for a linear
system ẋ = Ax, if and only if it possesses a quadratic
Lyapunov function V (x) = xTPx. This is equivalent to the
existence of a symmetric and positive definite matrix P such
that PTA+AP is negative definite. Therefore, if the stability
of the origin is to be investigated for (1), it is most natural to
search for a quadratic common Lyapunov function (QCLF).
This can be done by solving a linear matrix inequality (LMI):
Find a symmetric and positive definite P ∈ Rn×n such that
AT

i P + PAi is negative definite for all i; in formula:

P ≻ 0 and AT
i P + PAi ≺ 0 for i = 1, 2, . . . , N . (2)

The limitation of this LMI approach is that the origin might
be exponentially stable for (1), and thus there exist CLFs for
the subsystems, but none of these CLFs is quadratic.
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Hence, numerous methods computing norms (Minkowskii,
weighted), that can serve as Lyapunov functions for switched
linear systems, have surfaced in the literature. They usually use
linear programming (LP) to parameterize a Lyapunov function,
see e.g. [4]–[6], [10], [20], [21], [24], [25]; the converse
theorems from [18], [19] have been important for many of
these approaches.

In [1] yet another LP approach to compute a CLF for (1) was
presented, that is an adaptation of the so-called CPA method
to compute Lyapunov functions, cf. e.g. [3], [9], [13], [15],
to arbitrarily switched linear systems. While the examples in
[1] suggested that this method is more general than the LMI
approach (2), a proof of convergence was not delivered. The
main contribution of this letter is to deliver such a proof in
Theorem 2.

Suitable classes of Lyapunov functions for linear switched
systems were recently studied in [17], see also [12], [16],
where it was shown that the class of piecewise linear functions
is large enough when searching for CLFs for (1), i.e. there
always exists a piecewise linear Lyapunov function if the
origin is exponentially stable. These results, however, are
not directly applicable to prove that the LP approach from
[1] is always able to compute a Lyapunov function when
the origin is exponentially stable, because it uses an a priori
fixed triangulation. However, in Section 2 in [16] a converse
theorem is delivered that allows one to prove that it is indeed
constructive.

In Section II we recall some basic facts about triangulations
necessary for the CPA method and the LP approach from [1],
before we prove our main results in Section III, that the LP
approach is constructive, i.e., that it succeeds in computing
a Lyapunov function for the arbitrary switched system (1),
whenever the origin is exponentially stable.
Remark: The case n = 1 is trivial for the discussion in this
letter. Therefore we assume that n ≥ 2 in the whole letter.

A. Notation
We write vectors x ∈ Rn in bold face and assume they

are column vectors. For a vector x we write xi for its ith
component. For a matrix A and vector x we write AT and xT

for their transposes, respectively. For vectors x1,x2, . . . ,xm ∈
Rn we write (x1,x2, . . . ,xm) for the Rn×m matrix with xi

in its ith column.
For vectors x ∈ Rn and p ≥ 1 we define their p-norms

through ∥x∥p := (
∑n

i=1 |xi|p)
1/p. For p = ∞ we define



∥x∥∞ := limp→∞ ∥x∥p = maxi∈{1,2,...,n} |xi|. Recall the
norm equivalence relation (1/∞ := 0 and n0 := 1)

∥x∥p ≤ ∥x∥q ≤ nq−1−p−1

∥x∥p for ∞ ≥ p > q ≥ 1.

We define dist(A,B) := infx∈A,y∈B ∥x− y∥2 for nonempty
A,B ⊂ Rn.

A (vector) norm ∥ · ∥ on Rn induces a (matrix) norm on
Rn×n through ∥A∥ := max∥x∥=1 ∥Ax∥. An induced matrix
norm is sub-multiplicative, i.e. ∥AB∥ ≤ ∥A∥ ∥B∥ for all
A,B ∈ Rn×n, and obviously ∥Ax∥ ≤ ∥A∥∥x∥ for A ∈ Rn×n

and x ∈ Rn.
With p = 1, p = 2, and p = ∞ there are simple

formulas for the induced matrix norms: ∥A∥1 = ∥AT∥∞ =
maxi ∥ai∥1, where ai are the column vectors of A, and
∥A∥2 = max∥x∥2=1

√
xTATAx is the square root of the

largest eigenvalue of the symmetric and positive-semidefinite
matrix ATA. We denote by e1, e2, . . . , en the standard or-
thonormal basis of Rn.

By Sym(C) we denote the set of the permutations of a set
C, i.e. the set of bijective mappings C → C. Recall that the
gradient ∇V (x) of a function V : Rn → R at a point x ∈ Rn

is a row vector and therefore ∇V (x)y ∈ R is the scalar-
product of the column vectors [∇V (x)]T,y ∈ Rn. Finally,
N0 := {0, 1, 2, . . .} and N+ := N0 \ {0}, and recall that a
function V : Rn → R is said to be positively homogenous, if
for every c > 0 and all x ∈ Rn we have V (cx) = cV (x).

II. PRELIMINARIES

We recall some know results and definitions that we will
use in the proof of Theorem 1, which in turn is used to
prove the main results of this letter in Theorem 2. The sole
purpose of this section is to fix the notation and enhance the
readability of the proofs in Section III. First, in Section II-A
we recall some definitions regarding triangulations as needed
for the LP approach in [1]. Second, in Section II-B we state
the LP approach from [1] to compute a CLF for the systems
(1). Third, in Section II-C we recall the definitions of some
concrete triangulation used in the LP approach in [1] and the
proofs in Section III.

A. Triangulations

The approach in [1] attempts to parameterize a continuous
and piecewise affine (CPA) Lyapunov function using LP on
a compact domain D ⊂ Rn of the state-space of the system
in question. Thus, first a triangulation T of the domain D is
needed, i.e. a subdivision of D into simplices. An n-simplex
Sν ⊂ Rn with vertices xν

0 ,x
ν
1 , . . . ,x

ν
n ∈ Rn is defined as

Sν = co(xν
0 ,x

ν
1 , . . . ,x

ν
n)

:=

{
n∑

i=0

λix
ν
i :

n∑
i=0

λi = 1 and all λi ≥ 0

}
.

We write DT for the set-theoretic union of the simplices in T
and say that T triangulates DT = D ⊂ Rn. The triangulation
must be shape-regular in the sense that two different simplices

Sγ := co(xγ
0 ,x

γ
1 , . . . ,x

γ
n), γ ∈ {ν, µ},

of the triangulation intersect in a common face

Sν ∩Sµ = co(y0,y1, . . . ,yk), yj = xν
ℓνj

= xµ
ℓµj
,

where j = 0, 1, . . . , k < n, ℓνj , ℓ
µ
j ∈ {0, 1, . . . , n}, and

ℓγj ̸= ℓγm if j ̸= m, γ ∈ {ν, µ}. We are only interested in
non-degenerated simplices, i.e. Sν ∈ T has an n-dimensional
volume strictly larger than zero or equivalently, the vertices
xν
0 ,x

ν
1 , . . . ,x

ν
n are affinely independent; see [8] for details.

For our application, it is also convenient to assume that the
vertices of a simplex Sν ∈ T have a fixed order and we write
Sγ = co(xγ

0 ,x
γ
1 , . . . ,x

γ
n) rather than co{xγ

0 ,x
γ
1 , . . . ,x

γ
n},

i.e. ordered tuple rather than a set. Note that the convex
combination of the vectors is a subset of Rn and does not
depend on their order, however, the matrix Xν defined below
does depend on the order.

An additional requirement of a triangulation for the LP
problem from [1] is that all simplicies in the triangulation have
the origin as a vertex; for simplicity we assume xν

0 = 0 for all
simplices Sν ∈ T . For a simplex Sν = co(xν

0 ,x
ν
1 , . . . ,x

ν
n)

with xν
0 = 0, we repeatedly use the matrix

Xν := (xν
1 ,x

ν
2 , . . . ,x

ν
n) ∈ Rn×n,

i.e. the ith column of Xν is the vector xν
i . The matrix Xν is

the transpose of the so-called shape-matrix discussed in detail
in [11]. Note that the results presented in this letter do not
depend on the particular ordering of the vertices, but it must
be fixed for the Xνs to be well-defined.

B. LP approach for CPA Lyapunov function

We now state the LP feasibility problem from [1] to
parameterize a CPA CLF for the systems (1). Any solution to
the problem can be used to parameterize a Lyapunov function
for the switched system (1).

Assume T is a triangulation of a compact domain D ⊂ Rn

of the origin as described in the last section. We use two
constants ε1, ε2 > 0 in the LP problem. Their values are of
practical, but not theoretical interest, e.g. ε1 = ε2 = 1 is not
restrictive for the theory; see [1] for details.

The variables of the LP problem are Vx ∈ R for every vertex
of a simplex in T . The constraints of the LP problem are:

C1) V0 = 0 and for every vertex x of a simplex in T :

Vx ≥ ε1∥x∥2 (3)

C2) For every simplex Sν := co(0,xν
1 ,x

ν
2 . . . ,x

ν
n) ∈ T de-

fine the vector of variables vν =
(
Vxν

1
, Vxν

2
, . . . , Vxν

n

)T
and recall that Xν := (xν

1 ,x
ν
2 , . . . ,x

ν
n) ∈ Rn×n.

The constraints are: for every simplex Sν ∈ T , for all
j = 1, . . . , n, and all i = 1, 2, . . . , N :

vT
ν X

−1
ν Aix

ν
j ≤ −ε2∥xν

j ∥2. (4)

Note that (4) is automatically fulfilled for xν
0 = 0.



C. Triangulations T std, TK, K−1TK, and T F
K

A suitable concrete triangulation for our aim of proving
that the LP problem in Section II-B can always parameterize
a CLF for the systems (1) when one exists, is the triangular-
fan TK of the triangulation in [8]; this is discussed in more
detail in [1]. The triangulation is parameterized with K ∈ N+

and we show that if the origin is exponentially stable for the
switched system (1), then for every K ∈ N+ large enough,
the LP problem in Section II-B will have a feasible solution.
In its definition we use the functions RJ : Rn → Rn, defined
for every J ⊂ {1, 2, . . . , n} by

RJ (x) :=

n∑
i=1

(−1)χJ (i)xiei, χJ (i) :=

{
1, if i ∈ J ,
0, if i /∈ J .

where ei is the standard ith unit vector in Rn. Thus, RJ (x)
is the vector x, except for a minus has been put in front of
the coordinate xi whenever i ∈ J .

We first define the triangulation T std and then use it to
construct the triangulations we will use for the LP problem.

The standard triangulation T std consists of the simplices

SzJσ := co
(
xzJσ
0 ,xzJσ

1 , . . . ,xzJσ
n

)
,

where

xzJσ
j := RJ

(
z+

j∑
i=1

eσ(i)

)
, (5)

for all z ∈ Nn
0 , all J ⊂ {1, 2, . . . , n}, all σ ∈

Sym({1, 2, . . . , n}), and j = 0, 1, . . . , n; note that eσ(i),
j = σ(i), is the standard jth unit vector.

Now fix a K ∈ N+ and consider the simplices SzJσ ⊂
[−K,K]n ⊂ Rn in T std, that intersect the boundary of
the hypercube [−K,K]n. We are only interested in those
intersections that are (n−1)-simplices. We take every simplex
with vertices xzJσ

j , j ∈ {0, 1, . . . , n}, where exactly one
vertex xzJσ

j∗ satisfies ∥xzJσ
j∗ ∥∞ < K and ∥xzJσ

j ∥∞ = K
for j ∈ {0, 1, . . . , n} \ {j∗}. Then we replace the vertex
xzJσ
j∗ by 0; it is not difficult to see that j∗ is necessarily

equal to 0. The set of the simplices constructed in this way
triangulates [−K,K]n and this new triangulation, denoted TK ,
is our desired triangulation.

We will use two other triangulations, K−1TK , and T F
K ,

constructed from TK by mapping the vertices of its simplices.
Corresponding to the simplex Sν = co(xν

0 ,x
ν
1 , . . . ,x

ν
n) ∈ TK

is the simplex co(K−1xν
0 ,K

−1xν
1 , . . . ,K

−1xν
n) ∈ K−1TK

and the simplex co(F(xν
0),F(x

ν
1), . . . ,F(x

ν
n)) ∈ T F

K , where
F : Rn → Rn, F(0) = 0 and

F(x) :=
∥x∥∞
∥x∥2

x, if x ̸= 0. (6)

The triangulations K−1TK and T F
K consist of exactly the

simplices obtained in this manner from the simplices in TK .
For a depiction of T F

K see [1]. The triangulation T F
K usually

leads to LP problems with better numerical properties than
when using TK and the proof of Theorem 1 is more intuitive
using the triangulation K−1TK rather than TK .

III. MAIN RESULTS

Before we prove our main results in Theorem 1 and Theo-
rem 2, we prove a few useful lemmas to shorten their proofs.

Lemma 1: Let 1 := (1, 1, . . . , 1)T, c ∈ Rn, c1 ̸= −1, and
U = (uij) ∈ Rn×n with uij = 1 if i ≤ j and uij = 0
otherwise. Set cn+1 := 0 and define the vector d ∈ Rn through

di =
ci+1 − ci
c1 + 1

, for i = 1, 2, . . . , n.

Then

(U + c1T)−1 = U−1 + deT1 ,

∥(U + c1T)−1∥1 ≤ max{∥d∥1, 1}+ 1, and

∥(U + c1T)−1∥∞ ≤ ∥d∥∞ + 2.
Proof: Note that U is invertible and the elements of

U−1 = (ũij) ∈ Rn×n are

ũij =

 1, if i = j,
−1, if i+ 1 = j,
0, otherwise.

For computing (U +c1T)−1 we use the Sherman-Morrison
formula:

(U + c1T)−1 = U−1 − U−1c1TU−1

1 + 1TU−1c
.

Note that U−1c = (c1 − c2, c2 − c3, . . . , cn − cn+1)
T and

1TU−1 = eT1 , thus 1 + 1TU−1c = 1 + c1 ̸= 0 and

U−1c1TU−1

1 + 1TU−1c
=

(c1 − c2, c2 − c3, . . . , cn − cn+1)
T
eT1

1 + c1
= −deT1 .

Thus
(U + c1T)−1 = U−1 + deT1

by the Sherman-Morrison formula. The estimates for the
norms follow immediately from the formula for the inverse.

We now use the Lemma 1 to obtain upper bounds on norms
of the inverses of the matrices Xν for the simplices in T std.

Corollary 1: Let Sν = co(xν
0 ,x

ν
1 , . . . ,x

ν
n) ∈ TK and set

Xν = (xν
1 ,x

ν
2 , . . . ,x

ν
n) ∈ Rn×n. Then

∥X−1
ν ∥1 ≤ 3, ∥X−1

ν ∥∞ ≤ n+ 1, ∥X−1
ν ∥2 ≤

√
3(n+ 1).

Proof: By Section II-C, in particular formula (5), we may
assume that there is a subset J ⊂ {1, 2, . . . , n}, a permutation
σ ∈ Sym({1, 2, . . . , n}), and a vector z ∈ Nn

0 with ∥z∥∞ =
K − 1, such that for k = 1, 2, . . . , n (recall that xν

0 = 0) we
have

xν
k = xzJσ

k = RJ

(
z+

k∑
ℓ=1

eσ(ℓ)

)
= RJz+RJ u

σ
k , (7)

where uσ
k :=

∑k
ℓ=1 eσ(ℓ) and RJ ∈ Rn×n is the matrix

representation of RJ , i.e. RJ := diag(J1, J2, . . . , Jn), with
Ji = −1 if i ∈ J and Ji = 1 if i /∈ J .

Define the permutation matrix Pσ ∈ Rn×n, Pσ =(
eσ(1), eσ(2), . . . , eσ(n)

)T
, i.e. Pσeσ(i) = ei and PT

σ ei =
eσ(i). Then PσP

T
σ = I (the identity matrix) and ∥Pσ∥p = 1



for p ∈ {1, 2,∞}. Hence, with c := Pσz we have c1 = K−1
and

0 ≤ ck ≤ K − 1 and yk := PσRJx
ν
k = c+

k∑
ℓ=1

eℓ

for k = 1, 2, . . . , n. That is, PσRJXν = U + c1T, where
the matrix on the right-hand-side is of the same form as in
Lemma 1. Further, the vector d = (d1, d2, . . . , dn)

T in Lemma
1 fulfills |dk| ≤ (K−1)/K ≤ 1 for k = 1, 2, . . . , n. Therefore,
because PT

σ = P−1
σ and RJ = R−1

J , and for p ∈ {1, 2,∞},
we have that

∥X−1
ν ∥p = ∥X−1

ν R−1
J P−1

σ PσRJ∥p
≤ ∥(PσRJXν)

−1∥p∥Pσ∥p∥RJ∥p
= ∥(U + c1T)−1∥p · 1 · 1.

Since ∥d∥1 ≤ n and ∥d∥∞ ≤ 1 it follows from Lemma 1 that

∥X−1
ν ∥1 ≤ n+ 1 and ∥X−1

ν ∥∞ ≤ 3

and the bound
∥X−1

ν ∥2 ≤
√
3(n+ 1)

follows from the well known ∥A∥22 ≤ ∥A∥1∥A∥∞ for any
A ∈ Rn×n.

The next lemma adapts results from [16] to deliver a CLF
for the systems (1), that has all the properties needed to
be approximated arbitrary close in the C1 norm by CPA
functions. This is already done in [16], but not for CPA
functions with a priori fixed triangulations as we need to prove
that the LP approach to compute a CLF always succeeds when
a CLF exists for the systems (1). Recall from the Introduction
that the existence of a CLF for the systems (1) is equivalent to
the exponential stability of the origin for the arbitrary switched
system ẋ ∈ co{Aix}.

Lemma 2: Assume the origin is exponentially stable for
the arbitrary switched system ẋ ∈ co{Aix} corresponding to
the systems (1). Then there exists a continuous V : Rn → R
fulfilling:

1) V ∈ C∞(Rn \ {0}).
2) There exist constants α1, α2, α3 > 0 such that

α1∥x∥2 ≤ V (x) ≤ α2∥x∥2 for all x ∈ Rn (8)

and for all i = 1, 2, . . . , N we have

∇V (x)Aix ≤ −α3∥x∥2 for all x ∈ Rn \ {0}. (9)

3) For every c > 0 we have

V (cx) = cV (x) and [∇V ](cx) = ∇V (x)

for all x ∈ Rn \ {0}.
4)

V (x) = ∇V (x)x for all x ∈ Rn \ {0}.

In particular, V is a CLF for the systems (1).
Proof: By [16] there exist a compact, strictly convex

neighbourhood ∅ ≠ W ⊂ Rn of the origin, constants p,M ∈
N+, α > 0, and vectors gj ∈ Rn, j = 1, 2, . . . ,M , such that

W (x) =

M∑
j=1

(
gT
j x
)2p

fulfills max
x∈∂W

i=1,2,...,N

∇W (x)Aix ≤ −α.

Further, W (x) > 0 if x ̸= 0. Note that in [16] our W is
denoted W̃ and our W is a sublevel set {x ∈ Rn : W (x) ≤ 1}
of a continuous, positively homogenous CLF W : Rn → R
(not our W ).

First, we prove a few properties for W . From the formulas

W (x) =

M∑
j=1

(
gT
j x
)2p

and ∇W (x) = 2p

N∑
j=1

(
gT
j x
)2p−1

gT
j

we clearly have

W (cx) = c2pW (x) and [∇W ](cx) = c2p−1∇W (x) (10)

for c > 0 and x ̸= 0.
Let r,R > 0 be such that r ≤ ∥x̃∥2 ≤ R for all x̃ ∈ ∂W

and define

0 < m := min
x∈∂W

W (x) ≤ max
x∈∂W

W (x) =: M.

Fix an arbitrary x ̸= 0. Then there is a constant cx > 0 and a
unique x̃ ∈ ∂W such that x = cxx̃ and

cxr ≤ ∥x∥2 = cx∥x̃∥2 ≤ cxR, i.e.
∥x∥2
R

≤ cx ≤ ∥x∥2
r

.

Combined with (10) this gives

m
∥x∥2p2
R2p

≤ mc2px ≤ W (x) = W (cxx̃) (11)

= c2px W (x̃) ≤ Mc2px ≤ M
∥x∥2p2
r2p

and, for every i = 1, 2, . . . , N ,

∇W (x)Aix = [∇W ](cxx̃)Ai(cxx̃) (12)

= c2px ∇W (x̃)Aix̃ ≤ −αc2px ≤ − α

R2p
∥x∥2p2 .

We define V : Rn → R through V (x) := [W (x)]
1
2p and

show that it has all the claimed properties.

1) Clearly V is continuous and V ∈ C∞(Rn \ {0}).

2) From (11) it follows that

m
1
2p

R
∥x∥2 ≤ V (x) ≤ M

1
2p

r
∥x∥2

for all x ∈ Rn, i.e. (8) with α1 := m
1
2p /R and α2 := M

1
2p /r.

From (12) it follows that for every i = 1, 2, . . . , N and every
x ̸= 0 we have

∇V (x)Aix =
1

2p
[W (x)]

1
2p−1∇W (x)Aix

≤ − 1

2p
[W (x)]

1
2p−1 α

R2p
∥x∥2p2

≤ − 1

2p

(
M

r2p
∥x∥2p2

) 1
2p−1

α

R2p
∥x∥2p2

≤ −αM
1
2p−1

2pr

( r

R

)2p
∥x∥2p2

i.e. (9) with α3 := αM
1
2p−1(r/R)2p/(2pr).

3 and 4) By (10) we have for x ̸= 0 and c > 0 that

V (cx) = [W (cx)]
1
2p =

[
c2pW (x)

] 1
2p = cV (x).



Hence V is positively homogeneous of order one. The two
remaining statements of the lemma now follow immediately
from Euler’s Homogenous Function Theorem.

We first prove our main results using the triangulation
K−1TK in Theorem 1. Subsequently, we use Theorem 1 to
prove the same for the triangulation T F

K in Theorem 2.
Theorem 1: Assume the origin is exponentially stable for

the arbitrary switched system ẋ ∈ co{Aix} corresponding to
the systems (1). Then there exists a K∗ ∈ N+ such that the LP
problem in Section II-B using the triangulation T = K−1TK
has a feasible solution whenever K ≥ K∗.

Proof: Let V : Rn → R be the Lyapunov function from
Lemma 2 and define c := max{ε1/α1, 2ε2/α3}. For every
vertex x of a simplex in the triangulation T = K−1TK we
set the variable Vx from the LP problem in Section II-B equal
to cV (x) and show that the constraints C1 and C2 are fulfilled
if K ∈ N+ is large enough.

For every such vertex x we have by (8)

Vx = cV (x) ≥ ε1
α1

V (x) ≥ ε1
α1

α1∥x∥2 ≥ ε1∥x∥2 (13)

so the constraints C1 are fulfilled.
Let Sν := co(0,xν

1 ,x
ν
2 . . . ,x

ν
n) be an arbitrary simplex in

T = K−1TK and set Xν = (xν
1 ,x

ν
2 , . . . ,x

ν
n) ∈ Rn×n. Note

that, e.g. by using formula (7) to represent Kxν
k and Kxν

ℓ ,
that

∥xν
k∥∞ = 1 and ∥xν

k − xν
ℓ ∥2 ≤

√
n− 1

K
≤

√
n

K
(14)

for all k, ℓ = 1, 2, . . . , n. Further, we have

∥X−1
ν ∥2 ≤ K

√
3(n+ 1), (15)

because KSν = co(0,Kxν
1 ,Kxν

2 . . . ,Kxν
n) ∈ TK and thus

∥(Kxν
1 ,Kxν

2 . . . ,Kxν
n)

−1∥2 ≤
√
3(n+ 1) by Corollary 1.

With the vector of variables vν =
(
Vxν

1
, Vxν

2
, . . . , Vxν

n

)T
we

have
vν := c · (V (xν

1), V (xν
2), . . . , V (xν

n))
T

with our assigned values to the variables.
For the rest of the proof let j ∈ {1, 2, . . . , n} be arbitrary,

but fixed. We have by (15),

∥vT
ν X

−1
ν − c∇V (xν

j )∥2 = ∥[vT
ν − c∇V (xν

j )Xν ]X
−1
ν ∥2

≤ ∥vT
ν − c∇V (xν

j )Xν∥2∥X−1
ν ∥2 (16)

≤ ∥vT
ν − c∇V (xν

j )Xν∥2 ·K
√

3(n+ 1).

Denote by H : Rn → Rn×n the Hessian matrix of the function
V . By Taylor’s theorem and because V (xν

j ) = ∇V (xν
j )x

ν
j we

have for every k = 1, 2, . . . , n, k ̸= j, that

V (xν
k) = V (xν

j ) +∇V (xν
j )(x

ν
k − xν

j ) (17)

+
1

2
(xν

k − xν
j )

TH(ξ)(xν
k − xν

j )

= ∇V (xν
j )x

ν
k +

1

2
(xν

k − xν
j )

TH(ξ)(xν
k − xν

j )

for some ξ on the line segment between xν
j and xν

k. Set
H̃ := 1

2 max∥x∥∞=1 ∥H(x)∥2. The kth component of the

vector c−1vT −∇V (xν
j )Xν is V (xν

k)−∇V (xν
j )x

ν
k and can

be bounded using (14) and (17) by

|V (xν
k)−∇V (xν

j )x
ν
k| ≤ H̃∥xν

k − xν
j ∥22 ≤ nH̃

K2
.

Combined with (16) this delivers

∥vT
ν X

−1
ν − c∇V (xν

j )∥2 ≤
√
n · nH̃

K2
· cK

√
3(n+ 1)

= n
√

3n(n+ 1)H̃cK−1.

It follows, by using (9) and since c ≥ 2ε2/α3, that

vT
ν X

−1
ν Aix

ν
j = c∇V (xν

j )Aix
ν
j

+
[
vT
ν X

−1
ν − c∇V (xν

j )
]
Aix

ν
j

≤ −cα3∥xν
j ∥2

+ ∥vT
ν X

−1
ν − c∇V (xν

j )∥2∥Aix
ν
j ∥2

≤ −2ε2∥xν
j ∥2

+ n
√

3n(n+ 1)H̃cK−1∥Ai∥2∥xν
j ∥2.

Thus, choosing K∗ so large that

K∗ ≥
cn
√

3n(n+ 1)H̃

ε2
· max
i=1,2,...,N

∥Ai∥2

ensures constraints C2 are fulfilled for every K ≥ K∗.
We now use Theorem 1 to prove that we can just as well
use the numerically more adequate triangulation T F

K in the
LP problem in Section II-B and we still are guarantied to get
a solution.

Theorem 2: Assume the origin is exponentially stable for
the arbitrary switched system ẋ ∈ co{Aix} corresponding to
the systems (1). Then there exists a K∗ ∈ N+ such that the
LP problem in Section II-B using the triangulation T = T F

K

has a feasible solution whenever K ≥ K∗.
Proof: Let K∗ be as in Theorem 1 and let K ≥ K∗. Let

Sν = co(0,yν
1 ,y

ν
2 . . . ,y

ν
n) ∈ T F

K be arbitrary. Then there is
a simplex co(0,xν

1 ,x
ν
2 . . . ,x

ν
n) ∈ K−1TK such that

yν
j :=

∥Kxν
j ∥∞

∥Kxν
j ∥2

Kxν
j = F ν

j x
ν
j , with F ν

j :=
K∥xν

j ∥∞
∥xν

j ∥2
xν
j

for j = 1, 2, . . . , n. With

Yν := (yν
1 ,y

ν
2 , . . . ,y

ν
n) ∈ Rn×n,

Xν := (xν
1 ,x

ν
2 , . . . ,x

ν
n) ∈ Rn×n, and

Fν := diag(F ν
1 , F

ν
2 , . . . , F

ν
n ) ∈ Rn×n,

we have Yν = XνFν and FT
ν = Fν . In particular, with Vx :=

cV (x), as in the proof of Theorem 1, and

vν := c · (V (xν
1), V (xν

2), . . . , V (xν
n))

T
,

we have

vy
ν := c · (V (yν

1), V (yν
2), . . . , V (yν

n))
T
= Fνvν

because V (yν
j ) = V (F ν

j x
ν
j ) = F ν

j V (xν
j ) by Lemma 2.

We conclude the proof by showing that the constraints of
the LP problem in Section II-B are fulfilled for the yν

j because
they are fulfilled for the xν

j , j = 1, 2, . . . , n.



The constraints C1 follow from

Vyν
j
= cV (F ν

j x
ν
j ) = F ν

j cV (xν
j ) = F ν

j Vxν
j

≥ F ν
j ε1∥xν

j ∥2 = ε1∥F ν
j x

ν
j ∥2 = ε1∥yν

j ∥2.

The constraints C2 follow from

(vy
ν )

TY −1
ν Aiy

ν
j = vT

ν F
T
ν F−1

ν X−1
ν AiF

ν
j x

ν
j

= F ν
j v

T
ν X

−1
ν Aix

ν
j

≤ −F ν
j ε2∥xν

j ∥2 = −ε2∥yν
j ∥2.

IV. CONCLUSIONS

We proved, that the linear programming (LP) based ap-
proach from [1] for linear systems ẋ = Aix, i = 1, 2, . . . , N ,
always succeeds in computing a common Lyapunov function
(CLF) if the corresponding arbitrary switched system ẋ ∈
co{Aix} has an exponentially stable equilibrium at the origin.
In more detail, we proved in Theorem 2 that if the triangulation
used by the method is fine enough, specified by a parameter
K ∈ N+, then the resulting LP problem has a feasible
solution. Thus, the method in [1], which computes continuous
and piecewise affine (CPA) CLFs is not only more general
than searching for a quadratic common Lyapunov functions
(QCLFs) using linear matrix inequalities (LMIs), as suggest
by the examples in [1], but is not limiting at all.

Although these theoretical results are very satisfactory, the
curse of dimensionality remains a limiting factor in practice.
It remains to be investigated how this practical problem can
be eased, e.g. by using a kind of preconditioning as in [1], [2]
and/or by using specific kinds of CPA functions parameterized
with fewer parameters. This will be the subject of further
research.
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