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Abstract— The existence and stability of a periodic orbit
for time-periodic systems as well as its basin of attraction
can be determined using a contraction metric. In this paper,
we will present a numerical construction method based on
meshless collocation with radial basis functions. We will
first show the existence of a contraction metric satisfying a
partial differential equation and then use meshless colloca-
tion to approximately solve it, which results in a contraction
metric, if the fill distance is sufficiently small.

Index Terms— Approximation methods, Nonlinear dy-
namical systems, Partial differential equations.

I. INTRODUCTION

Contraction analysis considers the evolution of the distance
between two adjacent solutions; if the distance decreases
(contracts), then the long-term behaviour of solutions is the
same and solutions belong to the basin of attraction of a
periodic orbit under appropriate conditions. The advantage
compared to other methods, such as Lyapunov functions, is
that the position of the periodic orbit is not required.

To obtain a sufficient and necessary condition, the distance
needs to be measured with respect to an appropriate Rieman-
nian metric, a so-called contraction metric. The metric can
be described by a matrix-valued function M(t, x), defining a
point-dependent scalar product ⟨v, w⟩(t,x) = vTM(t, x)w for
v, w ∈ Rn. The contraction condition can then be expressed
by a differential matrix inequality.

Contraction analysis has been used for autonomous systems,
discrete-time systems, switched systems, delay equations [22],
control systems, stochastic systems [23] and many more,
see e.g. [1], [3], [5], [16], [18]–[20], [24]. It is used for
trajectory tracking and the control of systems with periodic
forcing, e.g. in satellite dynamics [21] and robotics [26], and
it can also provide formal optimality, stability and robustness
guarantees in learning-based and data-driven automatic control
frameworks [25, Part II].

To construct a contraction metric, we need to find a solution
to a differential matrix inequality; for an overview of numeri-
cal methods for contraction metrics see [10]. For example, the
problem can be reformulated using Linear Matrix Inequalities
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and, relaxing the requirement that the solution needs to be
positive definite, sum-of-squared polynomials (SOS) [2] and
be solved using semidefinite optimization. The CPA (con-
tinuous piecewise affine) method splits the phase space into
simplices and constructs the contraction metric as a piecewise
affine function on each simplex, using again semi-definite
optimization; see [8] for this method in the time-periodic
case. Note that semidefinite optimization is computationally
expensive. A further approach to compute contraction metrics,
which we will use and explain in more detail in Section III,
is based on meshless collocation.

II. CONTRACTION METRIC FOR TIME-PERIODIC SYSTEMS

Given f ∈ C1(R× Rn,Rn) with f(t+ T, x) = f(t, x) for
all (t, x) ∈ R× Rn, we consider the time-periodic system

ẋ = f(t, x), x ∈ Rn. (1)

We define ϕ(t; t0, x0) = (t0 + t mod T, x(t)), where x(t)
is the solution of (1) with initial condition x(t0) = x0.
Furthermore, we assume that ϕ(t; t0, x0) exists for all t ≥ 0,
so that ϕ defines a (semi-)dynamical system on the cylinder
ST × Rn, where ST denotes the circle of circumference T
with the metric |t− s| = min(|t− s|, |t− s+T |, |t− s−T |).

A periodic orbit of (1) is defined as Γ =
⋃
t≥0 ϕ(t; t0, p0)

where ϕ(T ; t0, p0) = ϕ(0; t0, p0). The periodic orbit is called
exponentially stable if it is stable and exponentially attractive,
and its basin of attraction A(Γ) is then defined as the set

{(t0, x0) ∈ ST × Rn | lim
t→∞

dist(ϕ(t; t0, x0),Γ) = 0},

where dist((t, x),Γ) = min(s,y)∈Γ dist((t, x), (s, y)) and dist
on the right-hand side is the distance in ST × Rn, for more
details see e.g. [6]. The existence of a periodic orbit and its
basin of attraction can be determined by a contraction metric.

A. Sufficiency

We cite [6, Definition 2.3, Theorem 3.1] for the definition
and sufficiency of a contraction metric in this context.

Definition 1: A matrix-valued function M ∈ C1(ST ×
Rn,Sn×n), where Sn×n denotes the set of symmetric Rn×n
matrices, is called Riemannian metric, if M(t, x) is positive
definite for each (t, x) ∈ ST × Rn.

Theorem 2: Let G ⊂ ST×Rn be a connected, compact and
positively invariant set, i.e. ϕ(t; t0, x0) ∈ G for all (t0, x0) ∈



G and t ≥ 0. Let M be a Riemannian metric and assume that
LM (t, x) < 0 for all (t, x) ∈ G, where

LM (t, x) = max
w∈Rn,wTM(t,x)w=1

1

2
wT

[
Dxf(t, x)

TM(t, x)

+M(t, x)Dxf(t, x) + Ṁ(t, x)

]
w,

Dxf(t, x) is the Jacobian of f(t, ·) and Ṁ(t, x) the matrix
with entries

(
∂Mij(t,x)

∂t +
∑n
k=1

∂Mij(t,x)
∂xk

fk(t, x)
)
i,j=1,...,n

.

Then there exists one and only one periodic orbit Γ ⊂ G and
Γ is exponentially stable, its basin of attraction satisfies G ⊂
A(Γ) and the largest real part −ν0 of all Floquet exponents
of Γ fulfills −ν0 ≤ −ν := max(t,x)∈G LM (t, x).

Note that the function LM (t, x) is continuous and is
equal to the largest (real) eigenvalue of the symmetric ma-
trix 1

2

[
Dxf(t, x)

TM(t, x) +M(t, x)Dxf(t, x) + Ṁ(t, x)
]
.

A positively invariant set G can, e.g., be computed numerically
as a sublevel set of a Lyapunov-like function [15].

B. Necessity
The existence of a contraction metric has been established

in [6, Theorem 4.2]. In this paper, we will prove the existence
of a contraction metric satisfying the differential equation (2),
so that we can construct it by approximately solving this
equation.

Theorem 3: Consider (1) with f ∈ Cσ(ST × Rn,Rn) and
σ ≥ 2. Let Γ be an exponentially stable periodic orbit with
basin of attraction A(Γ). Let C ∈ Cσ−1(A(Γ),Sn×n) such
that C(t, x) is positive definite for all (t, x) ∈ A(Γ).

Then there exists a unique Riemannian metric M ∈
Cσ−1(A(Γ),Sn×n) such that

Dxf(t, x)
TM(t, x) +M(t, x)Dxf(t, x) + Ṁ(t, x)

= −C(t, x) (2)

holds for all (t, x) ∈ A(Γ).
Proof: We fix a compact and positively invariant neigh-

borhood U ⊂ A(Γ) of Γ. For a point x̃0 := (t0, x0) ∈ U we
consider the linear, non-autonomous, time-periodic system

ẏ = Dxf(ϕ(t; x̃0))y

and denote the principal fundamental matrix solution at time t
with y(θ) = I by Ψ(t, θ; x̃0), which is a Cσ−1 function with
respect to its arguments. There exists θ0 > 0 such that Ψ is
defined for all t ≥ −θ0. Let p be the point on the periodic
orbit at time t0, i.e. ϕ(t; t0, p) is the periodic solution. Then
there exist c1, µ > 0 such that

∥ϕ(t; t0, x0)− ϕ(t; t0, p)∥ ≤ c1e
−µt

by the exponential stability of the periodic orbit and thus

∥Dxf(ϕ(t; x̃0))−B(t)∥ ≤ c2e
−µt (3)

since Dxf is locally Lipschitz-continuous, where we denote
B(t) = Dxf(ϕ(t; t0, p)), which is periodic in t with period T .
The principal fundamental matrix solution of ẏ = B(t)y with
Ψ̃(0) = I can be written as Ψ̃(t) = P (t)etL with T -periodic
P ∈ C1(R,Cn×n), such that P (t) is invertible, and L ∈ Cn×n

is Hurwitz since the periodic orbit is exponentially stable, see,
e.g. [9, Chapter 3]. Hence, Ṗ (t) + P (t)L = B(t)P (t).

Denote Ψ(t) := Ψ(t, 0; x̃0), Y (t) = P−1(t)Ψ(t) and
Z(t) = P−1(t)Ψ̃(t). Using ˙P−1(t) = −P−1(t)B(t) +
LP−1(t) from d

dt (P
−1(t)P (t)) = 0 and the formula for Ṗ (t)

above, we have

Ẏ (t) = ˙P−1(t)Ψ(t) + P−1(t)Dxf(ϕ(t; x̃0))Ψ(t)

= −P−1(t)B(t)Ψ(t) + LP−1(t)Ψ(t)

+P−1(t)Dxf(ϕ(t; x̃0))Ψ(t)

= LY (t) + P−1(t)[Dxf(ϕ(t; x̃0))−B(t)]P (t)Y (t)

and Ż = LZ. Denoting A(t) = L+ P−1(t)[Dxf(ϕ(t; x̃0))−
B(t)]P (t) and A = L, we can apply [7, Lemma A.2], which
also holds for complex matrices, to conclude that there exist
c3, ρ > 0 such that ∥Y (t)∥ ≤ c3e

−ρt and thus

∥Ψ(t, 0;ϕ(θ; x̃0))∥ ≤ c4e
−ρt (4)

for all |θ| < θ0 and t ≥ 0. The Chapman-Kolmogorov
identities, see e.g. [4, Proposition 2.12] show that

d

dθ
Ψ(τ, θ; x̃0) = −Ψ(τ, θ; x̃0)Dxf(ϕ(θ; x̃0)). (5)

Moreover, we have

Ψ(τ + θ, θ; x̃0) = Ψ(τ, 0;ϕ(θ; x̃0)), (6)

as both satisfy the initial value problem d
dτ y(τ) = Dxf(ϕ(τ+

θ; x̃0))y(τ) with y(0) = I .
We define

M(x̃0) =

∫ ∞

0

Ψ(τ, 0; x̃0)
TC(ϕ(τ ; x̃0))Ψ(τ, 0; x̃0) dτ.

We will show that M is well defined, satisfies the equation
(2) and is Cσ−1. It is clear that M(x̃0) is then symmetric and
positive definite, since C is.

We define and calculate with (6) for |θ| < θ0

gs(θ; x̃0) =

∫ s+θ

θ

Ψ(τ, θ; x̃0)
TC(ϕ(τ ; x̃0))Ψ(τ, θ; x̃0) dτ

=

∫ s

0

Ψ(τ + θ, θ; x̃0)
TC(ϕ(τ + θ; x̃0))Ψ(τ + θ, θ; x̃0) dτ

=

∫ s

0

Ψ(τ, 0;ϕ(θ; x̃0))
TC(ϕ(τ ;ϕ(θ; x̃0)))

·Ψ(τ, 0;ϕ(θ; x̃0)) dτ.

Using (4) and that C is bounded in U , we can conclude that
gs(θ; x̃0) converges pointwise as s→ ∞ by Lebesgue’s dom-
inated convergence theorem. Now we compute the derivative
and show that it converges uniformly. Using (5), we have

d

dθ
gs(θ; x̃0)

= Ψ(s+ θ, θ; x̃0)
TC(ϕ(s+ θ; x̃0))Ψ(s+ θ, θ; x̃0)

− C(ϕ(θ; x̃0))−Dxf(ϕ(θ; x̃0))
T ·∫ s+θ

θ

Ψ(τ, θ; x̃0)
TC(ϕ(τ ; x̃0))Ψ(τ, θ; x̃0) dτ

−
∫ s+θ

θ

Ψ(τ, θ; x̃0)
TC(ϕ(τ ; x̃0))Ψ(τ, θ; x̃0) dτ ·

Dxf(ϕ(θ; x̃0)).



By (6) we have∫ s+θ

θ

Ψ(τ, θ; x̃0)
TC(ϕ(τ ; x̃0))Ψ(τ, θ; x̃0) dτ

=

∫ s

0

Ψ(τ + θ, θ; x̃0)
TC(ϕ(τ + θ; x̃0))

·Ψ(τ + θ, θ; x̃0) dτ

=

∫ s

0

Ψ(τ, 0;ϕ(θ; x̃0))
TC(ϕ(τ ;ϕ(θ; x̃0)))

·Ψ(τ, 0;ϕ(θ; x̃0)) dτ.

By (4), d
dθgs(θ; x̃0) converges uniformly in θ as s→ ∞ and

Ṁ(x̃0) =
d

dθ
lim
s→∞

∫ s

0

Ψ(τ, 0;ϕ(θ; x̃0))
T ·

C(ϕ(τ ;ϕ(θ; x̃0)))Ψ(τ, 0;ϕ(θ; x̃0)) dτ

∣∣∣∣
θ=0

=
d

dθ
lim
s→∞

gs(θ; x̃0)

∣∣∣∣
θ=0

= lim
s→∞

d

dθ
gs(θ; x̃0)

∣∣∣∣
θ=0

= −C(x̃0)−Dxf(x̃0)
TM(x̃0)−M(x̃0)Dxf(x̃0)

which shows that M satisfies the differential equation (2) and
is well defined.

Finally, we will show that M is Cσ−1, adapting the argu-
mentation of [7, Proof of Theorem 4.4, Step 3]. Denote by
−ν < 0 the largest real part of all eigenvalues of L and let
ϵ = ν/2. There is an invertible matrix T ∈ Cn×n such that
we have with A = T−1LT

w∗ 1

2
(A+A∗)w ≤ (−ν + ϵ/2)∥w∥2 (7)

for all w ∈ Cn. Let U ⊂ A(Γ) be a positively invariant,
compact neighborhood of Γ such that also

∥T−1P−1(t)[Dxf(ϕ(t; x̃0))−B(t)]P (t)T∥ ≤ ϵ/2 (8)

holds for all x̃0 ∈ U and all t ≥ 0. Now let ν′ = min(ν/4, ρ).
We seek to show that

∥T−1P−1(t)∂αΨ(τ, 0; x̃0)∥ ≤ cαe
−ν′t (9)

holds for all α ∈ Nn+1
0 with |α| :=

∑n
i=0 |αi| ≤ σ−1, x̃0 ∈ U

and τ ≥ 0; the 0-th derivative is with respect to t0, and the i-th
derivative with respect to (x0)i, i ≥ 1. The proof will be by
induction with respect to k = |α|. For k = 0, (9) follows from
(4). Now we assume that (9) is true for all |α| = k− 1 where
1 ≤ k ≤ σ − 1. Let |α′| = k ≤ σ − 1, such that α′ = α + ei
with |α| = k − 1 and i ∈ {0, 1, . . . , n}. We have

2∥T−1P−1(t)∂α
′
Ψ(t, 0; x̃0)∥

d

dt
∥T−1P−1(t)∂α

′
Ψ(t, 0; x̃0)∥

=
d

dt
∥T−1P−1(t)∂α

′
Ψ(t, 0; x̃0)∥2

= (T−1P−1(t)∂α
′
Ψ(t, 0; x̃0))

∗T−1 ·[
d

dt
[P−1(t)]∂α

′
Ψ(t, 0; x̃0) + P−1(t)

d

dt
∂α

′
Ψ(t, 0; x̃0)

]
+

(
T−1

[ d
dt

[P−1(t)]∂α
′
Ψ(t, 0; x̃0)

+P−1(t)
d

dt
∂α

′
Ψ(t, 0; x̃0)

])∗

·

(T−1P−1(t)∂α
′
Ψ(t, 0; x̃0)).

Using Ψ̇(t, 0; x̃0) = Dxf(ϕ(t; x̃0))Ψ(t, 0; x̃0), we have

d

dt
[P−1(t)]∂α

′
Ψ(t, 0; x̃0) + P−1(t)

d

dt
∂α

′
Ψ(t, 0; x̃0)

= [−P−1(t)B(t) + LP−1(t)]∂α
′
Ψ(t, 0; x̃0)

+P−1(t)∂α
′
Dxf(ϕ(t; x̃0))Ψ(t, 0; x̃0).

Similar to [7] we have

∂α
′
Dxf(ϕ(t; x̃0))Ψ(t, 0; x̃0)

= Dxf(ϕ(t; x̃0))∂
α′
Ψ(t, 0; x̃0) + r(t)

with ∥r(t)∥ ≤ c5e
−ν′t, using a generalized Leibniz

rule and the induction hypothesis. Denoting w(t) =
T−1P−1(t)∂α

′
Ψ(t, 0; x̃0), and using (7) and (8), we have

∥w(t)∥ d
dt

∥w(t)∥ = w(t)∗
1

2
(T−1LT + (T−1LT )∗)w(t)

+∥w(t)∥
[
∥w(t)∥ ϵ

2
+ c6e

−ν′t
]

≤ (−ν + ϵ)∥w(t)∥2 + c6e
−ν′t∥w(t)∥

= −2ν′∥w(t)∥2 + c6e
−ν′t∥w(t)∥.

Application of Gronwall’s Lemma for w(t) shows (9).
The uniform convergence of∫ s

0

∂α[Ψ(τ, 0; x̃0)
TC(ϕ(τ ; x̃0))Ψ(τ, 0; x̃0)] dτ

as s → ∞ now follows in a similar way from (9) as in
[7], which shows that M ∈ Cσ−1. The uniqueness follows
similarly to the proof of [14, Theorem 2.3].

III. MESHLESS COLLOCATION

In this section we give a brief overview of meshless col-
location to solve matrix-valued partial differential equations
such as (2). We will mainly use [13], where this theory is
developed, however, as our setting is time-periodic, we will
also employ ideas from [12].

A. Reproducing Kernel Hilbert Space
We define a matrix-valued Reproducing Kernel Hilbert

Space following [13]. Here, L(Sn×n) denotes the linear space
of all linear and bounded operators L : Sn×n → Sn×n and
we use the following inner product in Sn×n (or Rn×n):
⟨α, β⟩Sn×n =

∑n
i,j=1 αijβij . We denote by Eµν the matrix

in Rn×n with a 1 at position (µ, ν) and zero otherwise, while
Esµν = 1√

2
(Eµν +Eνµ) for µ ̸= ν and Esµµ = Eµµ. Note that

Eµν is a basis of Rn×n, while Esµν is a basis of Sn×n.
Definition 4: A Hilbert space H of functions g : ST ×

Rn → Sn×n with inner product ⟨·, ·⟩H is called a Reproducing
Kernel Hilbert space with kernel Φ : (ST×Rn)×(ST×Rn) →
L(Sn×n) if

1) Φ(·, (t, x))α ∈ H for all α ∈ Sn×n and all (t, x) ∈
ST × Rn,

2) ⟨g(t, x), α⟩Sn×n = ⟨g,Φ(·, (t, x))α⟩H for all g ∈ H ,
α ∈ Sn×n and all (t, x) ∈ ST × Rn.

The action of Φ on α ∈ Sn×n is defined by

(Φ((t, x), (s, y))α)ij =

n∑
k,ℓ=1

Φ((t, x), (s, y))ijkℓαkℓ.



Note that a Hilbert space is a Reproducing Kernel Hilbert
Space, iff the point evaluation functionals are continuous see
[27, Theorem 10.2]. In addition, we require the kernel to be
positive definite in the following sense, see [13, Definition
2.3].

Definition 5: The kernel Φ : (ST × Rn) × (ST × Rn) →
L(Sn×n) is called positive definite if

N∑
j,k=1

⟨αj ,Φ((tj , xj), (tk, xk))αk⟩Sn×n > 0

holds for all N ∈ N, pairwise distinct points (tj , xj) ∈ ST ×
Rn, and all αj ∈ Sn×n, which are not all zero, j = 1, . . . , N .

We use a scalar-valued kernel to define a matrix-valued
reproducing kernel through

Φ((t, x), (s, y))ijµν =
∑
m∈Z

ϕ(∥(t− s+mT, x− y)∥)δiµδjν ,

(10)
where ϕ : R+

0 → R is a positive definite Radial Basis Function
with compact support and ∥·∥ is the Euclidean norm in Rn+1.
The compact support ensures that the sum is finite. The idea
is a combination of using a scalar valued kernel as in [13,
Lemma 3.2], together with [12], to make it a time-periodic
kernel.

Lemma 6: Let ϕ : R+
0 → R be a positive definite function,

i.e.
∑N
j,k=1 αjαkϕ(|xj − xk|) > 0 for all pairwise distinct

points xj ∈ R, j = 1, . . . , N and all α ∈ RN \ {0}.
Then the kernel defined in (10) is positive definite in the

sense of Definition 5.
Proof: Firstly,

∑
m∈Z ϕ(∥(t−s+mT, x−y)∥) is positive

definite on ST×R by [12, Theorem 3.8]. Secondly, the matrix-
valued kernel is positive definite by [13, Corollary 3.3].

We will choose as ϕ the scaled Wendland function r 7→
ψℓ,k(cr), c > 0, with ℓ = ⌊n+1

2 ⌋ + k + 1, which leads to
a Hilbert space of functions, which is norm equivalent to the
Sobolev space Hτ with τ = k+(n+2)/2. Since τ > (n+1)/2,
point evaluations are continuous by the Sobolev embedding
theorem and the space is a Reproducing Kernel Hilbert Space.

We will now formulate the search for the solution of (2) as
an optimal recovery problem. Setting

F (M)(t, x) := Dxf(t, x)
TM(t, x)

+M(t, x)Dxf(t, x) + Ṁ(t, x) (11)

we define the linear functionals λ(i,j)k : Hσ(ST×Rn;Sn×n) →
R by

λ
(i,j)
k (M) = eTi F (M)(tk, xk)ej =: eTi Fk(M)ej (12)

for (tk, xk) ∈ Ω, 1 ≤ k ≤ N and 1 ≤ i ≤ j ≤ n. The proof of
the following theorem follows from the proof of [13, Theorem
5.2].

Theorem 7: Let σ > (n+1)/2+1, s = σ+1, Ω ⊂ ST×Rn
be an open set and Φ the reproducing kernel of Hσ(Ω; Sn×n).
Let X = {(t1, x1), . . . , (tN , xN )} ⊂ Ω be pairwise distinct
points and λ(i,j)k be defined by (12).

Then there is a unique function S ∈ Hσ(Ω; Sn×n) which
solves

min{∥S∥Hσ(Ω;Sn×n) : λ
(i,j)
k (S) = −Cij(tk, xk)}

for all 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ N . Further,

S(t, x)

=

N∑
k=1

∑
1≤i≤j≤n

γ
(i,j)
k

∑
1≤µ≤ν≤n

λ
(i,j)
k (Φ(·, (t, x))Esµν)Esµν

=

N∑
k=1

n∑
i,j=1

β
(i,j)
k

n∑
µ,ν=1

Fk(Φ(·, (t, x))·,·,µ,ν)ijEµν (13)

where the γk are determined by

λ
(i,j)
ℓ (S) = −Cij(x̃ℓ) (14)

for 1 ≤ i ≤ j ≤ N and 1 ≤ ℓ ≤ N , while the βk ∈ Sn×n
are defined by β(j,i)

k = β
(i,j)
k = 1

2γ
(i,j)
k for i ̸= j and β(i,i)

k =

γ
(i,i)
k .
Using the ideas from [12], we can also prove the following

error estimate, similar to [13, Theorem 5.3].
Theorem 8: Let f ∈ Cs(ST × Rn), N ∋ s ≥ (n +

1)/2 + 2 and set σ = s − 1. Let Γ be an exponentially
stable periodic orbit of (1) with basin of attraction A(Γ).
Let C ∈ Cσ−1(A(Γ),Sn×n) be such that C(t, x) is positive
definite, and let M ∈ Cσ(A(Γ),Sn×n) be the solution of (2)
from Theorem 3. Let Γ ⊂ K ⊂ A(Γ) be a positively invariant,
compact set, and K ⊂ Ω ⊂ A(Γ) be an open set with Lipschitz
boundary. For S from Theorem 7 we have the error estimate

∥M − S∥L∞(K;Sn×n) ≤ c7∥F (M)− F (S)∥L∞(Ω;Sn×n)

≤ c8h
σ−1−(n+1)/2
X,Ω ∥M∥Hσ(Ω;Sn×n)

for all X ⊂ Ω with sufficiently small fill distance hX,Ω :=
supx̃∈Ω minx̃i∈X ∥x̃− x̃i∥, where ∥ · ∥ is a norm on ST ×Rn.
In particular, S is a contraction metric if hX,Ω is sufficiently
small.

B. Formulas

In this section we will provide the formulas for the com-
putation; they follow the argumentations in [14, Section 3.2].
We denote x̃ = (t, x) ∈ ST × Rn as well as the colloca-
tion points x̃k = (tk, xk). We fix a Radial Basis Function
with compact support, defined by ϕ(x̃, ỹ) = ψ0(∥x̃ − ỹ∥),
e.g. ψ0(r) := ψℓ,k(cr) as discussed above, and denote
ψm+1(r) = dψm(r)/dr

r for m = 0, 1. We assume that ψ1

and ψ2 can be continuously extended up to r = 0; this is
true for (sufficiently smooth) Wendland functions. For the
linear operators Fk, see (12), we have, denoting ∂0 := ∂t
and f̃(x̃) = (f0(x̃), . . . , fn(x̃))

T with f0(x̃) = 1,

(Fk(M))ij =

n∑
p=1

Dxfpi(x̃k)Mpj(x̃k)

+

n∑
p=1

Mip(x̃k)Dxfpj(x̃k) +

n∑
p=0

∂pMij(x̃k)fp(x̃k).

In the following formulas we let

ṽm := x̃k − x̃+ (mT, 0) and rm := ∥ṽm∥, m ∈ Z;



that is, mT is added to the zero-th component of the vector
x̃k − x̃ ∈ Rn+1. Further, (ṽm)p denotes the p-th component
of the vector ṽm. By (10) we get

(Fk(Φ(·, x̃))·,·,µ,ν)ij

=
∑
m∈Z

[ n∑
p=1

ψ0(rm)Dxfpi(x̃k)δpµδjν

+

n∑
p=1

ψ0(rm)δiµδpνDxfpj(x̃k)

+

n∑
p=0

ψ1(rm)(ṽm)pfp(x̃k)δiµδjν

]
=

∑
m∈Z

[
ψ0(rm)[Dxfµi(x̃k)δjν + δiµDxfνj(x̃k)]

+ ψ1(rm)⟨ṽm, f̃(x̃k)⟩δiµδjν
]
,

where ⟨·, ·⟩ denotes the standard scalar product in Rn+1.
Next, we compute S(x̃) using (13) and get

S(x̃) =
∑
m∈Z

N∑
k=1

[ n∑
i,µ,ν=1

β
(i,ν)
k ψ0(rm)Dxfµi(x̃k)Eµν

+

n∑
j,µ,ν=1

β
(µ,j)
k ψ0(rm)Dxfνj(x̃k)Eµν

+

n∑
µ,ν=1

β
(µ,ν)
k ψ1(rm)⟨ṽm, f̃(x̃k)⟩Eµν

]

=
∑
m∈Z

N∑
k=1

[
ψ0(rm)

[
Dxf(x̃k)βk + βkDxf(x̃k)

T
]

+ψ1(rm)⟨ṽm, f̃(x̃k)⟩βk
]
. (15)

Hence,

F (S(x̃)) =∑
m∈Z

N∑
k=1

[
ψ0(rm)

[
Dxf(x̃)

T (Dxf(x̃k)βk + βkDxf(x̃k)
T )

+ (Dxf(x̃k)βk + βkDxf(x̃k)
T )Dxf(x̃)

]
+ ψ1(rm)⟨ṽm, f̃(x̃k)⟩

[
Dxf(x̃)

Tβk + βkDxf(x̃)
]

− ψ1(rm)⟨ṽm, f̃(x̃)⟩
[
Dxf(x̃k)βk + βkDxf(x̃k)

T
]

− ψ1(rm)⟨f̃(x̃), f̃(x̃k)⟩βk

− ψ2(rm)⟨ṽm, f̃(x̃k)⟩⟨ṽm, f̃(x̃)⟩βk
]
. (16)

Now we consider the linear system for the coefficients γk
and βk, respectively.

Let us first calculate the coefficients bk,ℓ,i,j,µ,ν for 1 ≤
k, ℓ ≤ N , 1 ≤ i, j, µ, ν ≤ n such that

(F (S(x̃ℓ)))i,j =

N∑
k=1

n∑
µ,ν=1

bk,ℓ,i,j,µ,νβ
(µ,ν)
k , (17)

where β(µ,ν)
k is the (µ, ν)-th entry of the matrix βk. Denoting

ṽm := x̃k − x̃ℓ + (mT, 0) and rm := ∥ṽm∥, m ∈ Z

we have with (16)

bk,ℓ,i,j,µ,ν

=
∑
m∈Z

[
ψ0(rm)

[ n∑
p=1

Dxfpi(x̃ℓ)Dxfpµ(x̃k)δνj

+Dxfµi(x̃ℓ)Dxfjν(x̃k) +Dxfiµ(x̃k)Dxfνj(x̃ℓ)

+ δiµ

n∑
p=1

Dxfpν(x̃k)Dxfpj(x̃ℓ)

]
+ ψ1(rm)⟨ṽm, f̃(x̃k)⟩ [Dxfµi(x̃ℓ)δνj + δiµDxfνj(x̃ℓ)]

− ψ1(rm)⟨ṽm, f̃(x̃ℓ)⟩ [Dxfiµ(x̃k)δνj + δiµDxfjν(x̃k)]

− ψ1(rm)⟨f̃(x̃ℓ), f̃(x̃k)⟩δiµδjν

− ψ2(rm)⟨ṽm, f̃(x̃k)⟩ ⟨ṽm, f̃(x̃ℓ)⟩δiµδjν
]
. (18)

From here, we can define the coefficients ck,ℓ,i,j,µ,ν by

1

4

(
bk,ℓ,i,j,µ,ν + bk,ℓ,j,i,ν,µ + bk,ℓ,i,j,ν,µ + bk,ℓ,j,i,µ,ν

)
(19)

where we assume µ ≤ ν and i ≤ j.
Summarising, for the computations we calculate the coeffi-

cients ck,ℓ,i,j,µ,ν using (19) and (18). Then we solve

−Cij(x̃ℓ) =

N∑
k=1

n∑
µ=1

n∑
ν=µ

ck,ℓ,i,j,µ,νγ
(µ,ν)
k (20)

to determine γ
(µ,ν)
k for i ≤ j, see (14) and (17). Then, we

compute βk ∈ Sn×n from γk; recall that β(j,i)
k = β

(i,j)
k =

1
2γ

(i,j)
k if i ̸= j and β

(i,i)
k = γ

(i,i)
k . S(x̃) and F (S(x̃)) are

then given by (15) and (16).

IV. EXAMPLE

We apply our method to the Duffing equation, which models
a mass-spring system with a hardening spring, linear viscous
damping, and a periodic external force

mẍ+ cẋ+ kx+ ka2x3 = A cos(ωt).

With y = ẋ and c = k = m = 1 we can write it as

ẋ = y, ẏ = −x(1 + a2x2)− y +A cos(ωt). (21)

For A = 0 the system is autonomous and the zero solution
is asymptotically stable, but for A ̸= 0 the system is time-
periodic and does not possess a stationary solution. We set
a = 0.1, A = 0.15, and ω = 1; note that the period of
the system is T = 2π. We distributed our collocation points
in Ω := [0, 2π] × [−0.5, 0.5]2 using the optimal grid from
[17] scaled with density parameter α = 0.35. This resulted
in N = 252 collocation points optimally distributed in Ω to
minimize the fill-distance. As radial basis function we used
the Wendland function ψ4,2 with scaling parameter c = 0.5;
i.e. ψ0(r) := ψ4,2(cr). Checking the positive definiteness
of S(t, x, y) and the negative definiteness of FS(t, x, y) on
a dense grid around Ω showed that in Ω the numerically
computed S is a contraction metric for the system. To ob-
tain rigorous guarantees for the computed contraction metric,



Fig. 1. Subset of the basin of attraction. The set inside the red surface
is positively invariant for the dynamics of (21) with a = 0.1, A = 0.15,
and ω = 1 [15] as a 6π-periodic system. We computed a contraction
metric S(t, x, y) for time-periodic systems using the method described
in the paper; the black x’s at the boundary denote where S fails to fulfill
the conditions of a contraction metric. Since S(t, x, y) is a contraction
metric on a superset of the positively invariant set G inside the red
surface, it contains exactly one periodic orbit, the periodic orbit is
exponentially stable and the set is a subset of its basin of attraction.

one can interpolate the contraction metric by a continuous
piecewise affine (CPA) contraction metric [11].

To apply Theorem 2, we require a positively invariant set
for the system. In [15, Example 4], a positively invariant set
G ⊂ S6π × R2 was computed, considering this system with
period T = 6π. Our computed metric S is also 6π-periodic,
so the set in Figure 1 satisfies the assumptions of Theorem
2 with T = 6π; in particular, there exists exactly one 6π-
periodic orbit in the set and this orbit is exponentially stable,
while the set is a subset of its basin of attraction.

Let p ∈ R2 be the point of the 6π-periodic orbit at time
0. Note that P = ∪t∈[0,6π]ϕ(t; 0, p) ∪ ϕ(t; 0, ϕ(2π; 0, p)) is
a positively invariant set and satisfies the assumptions of
Theorem 2 for T = 6π, so it contains a unique periodic orbit;
hence, p = ϕ(2π; 0, p) and the periodic orbit has in fact period
T = 2π. Defining Gi = G

∣∣
[2π(i−1),2πi]×R2 , i = 1, 2, 3 as sets

in S2π × R2, we have that the intersection ∩3
i=1Gi contains

the periodic orbit (of period 2π), while the union ∪3
i=1Gi is

a subset of its basin of attraction.

V. CONCLUSIONS

In this paper we have developed a construction method for
contraction metrics for time-periodic systems. We have first
shown the existence of a contraction metric, satisfying a partial
differential equation. Using meshless collocation with radial
basis functions, we then compute an approximate solution to
this differential equation which, if sufficiently close, is itself
a contraction metric.

The method can be extended to, e.g., non-autonomous
systems and stochastic systems which can be viewed as per-
turbations of a time-periodic system by using the contraction
metric computed with our proposed method [25].
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