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Abstract—We present a novel method to compute convex
Lyapunov functions for discrete-time, switched systems. The
individual subsystems are assumed to be linear. The method
uses linear programming to construct continuous piecewise affine
and convex Lyapunov functions for the switched system. We
demonstrate the applicability of our method with two examples
from the literature.

Index Terms—Lyapunov functions, switched systems, discrete-
time systems, linear programming

I. INTRODUCTION

Switched systems have become a topic of interest in recent
years. They can be used to model a wide variety of complex
systems with applications in many fields, such as the con-
trol of mechanical systems, process control and automotive
systems [1], [2]. The stability analysis of switched systems
is however non-trivial. Much research has been done on the
stability analysis of switched systems under various switching
rules, both in the continuous-time and discrete-time domain.

The switching rule in switched systems can be, among
other things, arbitrary or state-dependent. Several methods
for the stability analysis of discrete-time switched systems
under arbitrary switching have been proposed in the literature,
see, e.g., [3], [4], [5], [6] and [7]. Meanwhile, discrete-time
switched systems under state-dependent switching, which in-
clude discrete-time piecewise affine systems, share some sim-
ilarities with general discrete-time nonlinear systems. Some
methods to analyze the stability of these systems are discussed
in [8], [9], [10], [11], [12] and [13].

Of particular interest is the method presented in [6], which
is an extension of the method in [13] for discrete-time arbitrary
switched systems. This method utilizes a triangulation of the
state-space and a linear programming (LP) problem to con-
struct a continuous piecewise affine (CPA) Lyapunov function
to systems with an asymptotically stable equilibrium. The CPA
Lyapunov function is defined over a subset of the basin of
attraction of the equilibrium point excluding an arbitrarily
small neighbourhood of the equilibrium point. The Lyapunov
function shows that any solution starting in a sublevel set of
the Lyapunov function will eventually enter, and remain in,
the lowest sublevel set of the Lyapunov function. Even though
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for practical applications this result is often sufficient to meet
design requirements, from a theoretical point of view it can be
undesirable. Furthermore, error bounds must be included in the
conditions of the LP problem, even for linear systems. Often a
large number of small simplices is needed in the triangulation
due to these error bounds, which causes the size of the LP
problem to increase.

The main contribution of this paper is a modification of the
LP problem in [6], specifically for switched linear systems,
that constructs a CPA Lyapunov function over the entire
domain of the state and does not need error bounds. Hence,
this method can prove global asymptotic stability of the
equilibrium point. This is achieved by enforcing convexity
of the Lyapunov function by introducing additional linear
constraints in the LP problem. For switched linear systems
and convex Lyapunov functions the error bounds in [6] are
namely not needed, as will be shown in Theorem 1.

The remainder of this paper is structured as follows. Firstly,
the definitions used throughout this report will be introduced
in Section II. Secondly, the proposed method of constructing
convex CPA Lyapunov functions with linear programming will
be discussed in Section III. In Section IV the proposed method
will subsequently be demonstrated on an arbitrary switched
system and a state-dependent switched system. Finally, con-
cluding remarks will be given in Section V.

II. DEFINITIONS

Consider the general class of discrete-time switched linear
systems

xk+1 ∈ {Axk : A ∈ A(xk)} (1)

where xk ∈ Rn for all k ∈ N and A : Rn ⇒ Rn×n is a
set-valued function. Assume A(xk) is a non-empty and finite
set for all xk ∈ Rn and A(axk) = A(xk) for all a > 0. A
solution of (1) at time instance k with initial condition x0 is
denoted by ψ(k,x0). Note that an arbitrary switched linear
system

xk+1 ∈ {A1xk, A2xk, . . . , AMxk}, (2)

where {A1, A2, . . . , AM} ⊂ Rn×n with 0 < M ∈ N, can
be described by (1) by defining A(xk) = {A1, A2, . . . , AM}
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for all xk ∈ Rn. Similarly, a switched linear system under
state-dependent switching

xk+1 = Ajxk if xk ∈ Sj , (3)

where Aj ∈ Rn×n and Sj ⊂ Rn is a cone, for all j ∈
{1, 2, . . . ,M}, can be described by (1) by defining

Aj ∈ A(xk) if and only if xk ∈ Sj .

To study the stability of (1), the following definitions
of strong global asymptotic stability (GAS) and Lyapunov
functions for difference inclusions are taken from [14]. In [14]
it is also proven that the existence of a Lyapunov function
for (1) is equivalent to (1) being strongly GAS.

Definition 1: A difference inclusion xk+1 ∈ F (xk) is said
to be strongly GAS if there exists a KL-function1 β such
that for every initial condition x0 ∈ Rn all solutions ψ(k,x0)
satisfy

∥ψ(k,x0)∥ ≤ β(∥x0∥, k) ∀k ∈ N,

where ∥x∥ can be an arbitrary norm of x ∈ Rn.
Definition 2: A function V : Rn −→ R≥0 is said to be a

Lyapunov function to the difference inclusion xk+1 ∈ F (xk)
if there exist K∞-functions α1, α2 and a positive definite
function α3, i.e., α3(0) = 0 and α3(r) > 0 for all r ∈ R\{0},
such that for all x ∈ Rn

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (4)

and
sup

y∈F (x)

V (y)− V (x) ≤ −α3(∥x∥). (5)

Finally, since the derivative of a continuous piecewise
function ϕ(t) can be ill-defined, it will be necessary to use
the Dini-derivative instead in those cases, which is defined as

D+ϕ(t) := lim sup
h→0+

ϕ(t+ h)− ϕ(t)

h
.

III. CONVEX CPA LYAPUNOV FUNCTIONS

Our method attempts to parameterize a convex CPA Lya-
punov function for (1) on a compact neighbourhood of the
origin. If successful, this Lyapunov function can then be
extrapolated to the whole state-space Rn. For the parameter-
ization, a triangulation T of the compact neighbourhood is
required. In this section we will first discuss the specifics of the
triangulation and then the construction of the CPA Lyapunov
function.

A. Triangulation

The triangulation T of a compact subset D ⊂ Rn is a
partition of D into n-simplices. An n-simplex Sν ⊂ Rn with
vertices xν

0 ,x
ν
1 , . . . ,x

ν
n ∈ Rn is defined as

Sν =co(xν
0 ,x

ν
1 , . . . ,x

ν
n)

:=

{
n∑

i=0

λix
ν
i :

n∑
i=0

λi = 1 and all λi ≥ 0

}
.

1We adopt the standard definitions for K-, K∞- and KL-functions from
Definitions 4.2 and 4.3 in [15].

For our application it is convenient to always have xν
0 = 0,

because we want the origin to be a vertex of all simplices.
Assume that the vectors xν

1 ,x
ν
2 , . . . ,x

ν
n are linearly inde-

pendent and that the vertices of a simplex Sν ∈ T have a
fixed order, which is why we write Sν = co(xν

0 ,x
ν
1 , . . . ,x

ν
n)

rather than co{xν
0 ,x

ν
1 , . . . ,x

ν
n}, i.e., ordered tuple rather than

set. It follows from the first assumption that a simplex Sν ∈ T
is always non-degenerate, i.e., it has a positive n-dimensional
volume, and that for every x ∈ Sν there is a unique set of
numbers 0 ≤ λi ≤ 1, i ∈ {0, 1, . . . , n}, such that

∑n
i=0 λi = 1

and x =
∑n

i=0 λix
ν
i . The matrix

Xν :=
[
xν
1 xν

2 . . . xν
n

]
∈ Rn×n

is invertible and well-defined for the simplex Sν because of
the first and second assumption, respectively. See [16] for a
detailed discussion of X−⊤

ν , which plays an important role
in many algorithms to parameterize Lyapunov functions using
linear programming.

Further, the triangulation T must be shape-regular, i.e., for
any Sν and Sµ in T , ν ̸= µ it must hold that

Sν ∩Sµ = co(y0,y1, . . . ,yk), yj = xν
ℓνj

= xµ
ℓµj
,

where y0 := 0, j ∈ {0, 1, . . . , k}, 0 ≤ k < n, ℓνj , ℓ
µ
j ∈

{0, 1, . . . , n}, and neither ℓνj = ℓνm nor ℓµj = ℓµm if j ̸= m. In
other words, T is shape-regular if any two n-simplices Sν and
Sµ in T , ν ̸= µ, intersect in a common lower dimensional
face. Concrete triangulations fulfilling these conditions are,
e.g., the triangulations TK and T F

K defined in [17], which we
use in our examples.

Finally, for every simplex Sν ∈ T a corresponding simpli-
cial cone can be defined by

Cν := cone(xν
0 ,x

ν
1 , . . . ,x

ν
n) :=

{
n∑

i=0

λix
ν
i : λi ≥ 0

}
.

Note that since T is a triangulation of a neighbourhood of the
origin D, the set-theoretic union of all Cν is necessarily equal
to Rn.

B. LP approach for CPA Lyapunov functions

Given a triangulation T as defined in Section III-A, a CPA
function V : Rn → R can be parameterized by specifying its
value at all the vertices x in T , where by abuse of notation
we refer to x as a vertex of T if x is a vertex of any simplex
in T . Let these values be denoted by Vx, i.e., V (x) := Vx.
Note that if two simplices Sν ,Sµ ∈ T have a common vertex
x, i.e., if x = xν

i = xµ
j for some i, j ∈ {0, 1, . . . , n}, then

Vxν
i
= Vxµ

j
. This ensures V is well-defined and continuous.

Note that for every x ∈ Rn there exists a simplicial cone
Cν such that x ∈ Cν , i.e., there exist λi ≥ 0 such that x =∑n

i=0 λix
ν
i . Therefore the CPA function V can be defined by

V (x) :=

n∑
i=0

λiVxν
i
. (6)

This can equivalently be expressed as

V (x) = ∇Vν • x if x ∈ Cν ,



where
∇Vν = v⊤

ν X
−1
ν

and
vν :=

[
Vxν

1
Vxν

2
. . . Vxν

n

]⊤ ∈ Rn.

To find suitable values for the Vx such that (6) is a Lyapunov
function for (1), an LP problem can be used. Any feasible
solution to the LP problem can then be used to parameterize
a Lyapunov function for the switched system. The conditions
of the LP problem are expressed by the following theorem.

Theorem 1: Consider system (1) and a triangulation T as in
Section III-A. Let c1, c2 > 0, let Vx ∈ R for every vertex x in
T and let V : Rn → R be parameterized by the values Vx as
defined above. Assume the following conditions are fulfilled:

(i) V is zero at the origin, i.e.,

V0 = 0; (7)

(ii) For every vertex x in T

Vx ≥ c1∥x∥; (8)

(iii) For every simplex Sν in T , for every A ∈
⋃

s∈Sν ,s ̸=0

A(s)

and for every vertex xν
i of Sν , i ∈ {1, 2, . . . , n},

V (Axν
i )− Vxν

i
≤ −c2∥xν

i ∥; (9)

(iv) For every two simplices Sν , Sµ ∈ T with Sν ∩Sµ ̸=
{0}, i.e., Sν and Sµ have at least two common vertices,
and for all i ∈ {1, 2, ..., n}

[∇Vν−∇Vµ] •xν
i ≥ 0 and [∇Vµ−∇Vν ] •xµ

i ≥ 0. (10)

Then V is a convex CPA Lyapunov function for system (1).
Remark 1: The conditions in Theorem 1 can all be formu-

lated as linear constraints on Vx, where x are vertices in T .
An LP problem with optimization variables Vx and constraints
(i)-(iv) can thus be used to check for the existence of a convex
CPA Lyapunov function.

The computational load of the resulting LP problem largely
depends on the used triangulation T . Take for example the
triangulation T F

K from [17], where K is a measure of how re-
fined the triangulation is. There are p = (2K+1)n−(2K−1)n

vertices x in T F
K and N = 2n · Kn−1 · n! simplices in T F

K .
When using Theorem 1 and the triangulation T F

K to analyze
the stability of an arbitrary switched linear system (2), the
resulting LP problem would have p optimization variables
and at least p +MNn constraints, not counting constraints
(iv) which vary in number. Despite not counting constraints
(iv), it is already clear that the size of the LP problem scales
rapidly with the refinement K and the state dimension n. This
can become a computational limitation, as for some systems
we might require a large K in order to construct a convex
CPA Lyapunov function using the proposed method. This
problem can to some extent be mitigated by introducing state
transformations, as discussed in [17].

Remark 2: Note that the inequalities in (10) are trivially
fulfilled for the common vertices of Sν and Sµ. Hence, those
constraints need not be checked in the LP problem.

Remark 3: When using Theorem 1 for a state-dependent
switched linear system as defined in (3), some conservatism
may be introduced. This is due to that constraint (iii) enforces

V (Ajx)− V (x) ≤ −c2∥x∥

for all x ∈ Cν , where Cν ∩ Sj ̸= {0}, instead of for all
x ∈ Cν ∩ Sj . This conservatism can be reduced by refining
the triangulation T or by choosing a different triangulation T
such that each Sj is equal to the union of some Cν in T .

To prove Theorem 1, we first prove a lemma which shows
that V is indeed a convex function.

Lemma 1: The function V : Rn → R defined in Theorem 1
is convex.

Proof: To show that V : Rn → R is convex, we show that
for every y, z ∈ Rn, the function ϕ : [0, 1] → R defined as

ϕ(t) = V (y + t[z− y]), (11)

has a non-decreasing Dini-derivative

D+ϕ : [0, 1) → R.

By the Generalized Mean Value Theorem, see, e.g., [18], it
then holds for an arbitrary α ∈ (0, 1) that

ϕ(α)− ϕ(0)

α
≤ sup

t∈[0,α]

D+ϕ(t)

≤ inf
t∈[α,1)

D+ϕ(t) ≤ ϕ(1)− ϕ(α)

1− α
,

which implies

ϕ(α) ≤ (1− α)ϕ(0) + αϕ(1). (12)

From (11) and (12) it then follows that

V (αz+ (1− α)y) ≤ αV (z) + (1− α)V (y),

which shows that V is convex.
Note that it is sufficient to show that D+ϕ is non-decreasing

for the cases
(i) [y, z] ⊂ Cν ;

(ii) and [y, z] ⊂ Cν∪Cµ, where y ∈ Cν \Cµ and z ∈ Cµ\Cν .
Here, [y, z] is the line segment between y ∈ Rn and z ∈ Rn,
i.e.,

[y, z] := {αz+ (1− α)y ∈ Rn : α ∈ [0, 1]}.

The reason it is sufficient to only consider cases (i) and (ii)
is because every line segment [y, z] can be subdivided into
smaller line segments [si, si+1], where i ∈ {0, 1, . . . , r − 1},

si := siz+ (1− si)y, 0 = s0 < s1 < . . . < sr = 1

and
r−1⋃
i=1

[si, si+1] = [y, z],



such that each subsegment [si, si+1] satisfies either the condi-
tions of case (i) or (ii). If the Dini-derivative is non-decreasing
over each such subsegment, then the Dini-derivative must also
be non-decreasing over the original line segment [y, z].

Case (i) is trivial since V (x) = ∇Vν • x if x ∈ Cν . Thus

D+ϕ(t) = ∇Vν • [z− y]

has a constant value and therefore, it is non-decreasing.
For case (ii) let t∗ ∈ (0, 1) be such that

[y,y + t∗(z− y)] ⊂ Cν

and
[y + t∗(z− y), z] ⊂ Cµ.

Then
z∗ := y + t∗(z− y) ∈ Cν ∩ Cµ. (13)

Note that

D+ϕ(t) = ∇Vν • [z− y] for t ∈ [0, t∗) and

D+ϕ(t) = ∇Vµ • [z− y] for t ∈ [t∗, 1).

Hence, we must show that

∇Vν • [z− y] ≤ ∇Vµ • [z− y]. (14)

Let us first consider the case where Cν ∩Cµ = Sν ∩Sµ =
{0}. Note that then necessarily z∗ = 0. It follows from (13)
that z = −c∗y, where c∗ = (1 − t∗)/t∗ > 0. Due to
conditions (7) and (8) of the LP problem, V has a minimum at
0. Therefore, 0 < V (y) = ∇Vν • y and 0 < V (z) = ∇Vµ • z.
Then, (14) follows from

∇Vν • [z− y] = −(1 + c∗)∇Vν • y

< 0 < (1 + 1/c∗)∇Vµ • z = ∇Vµ • [z− y].

Now consider the case where Cν ∩ Cµ ̸= {0}. Because the
triangulation T is shape-regular, we have

Cν ∩ Cµ = cone{y0,y1, . . . ,yk}, yj = xν
ℓνj

= xµ
ℓµj
,

where y0 := 0, j ∈ {0, 1, . . . , k}, 0 ≤ k < n, ℓνj , ℓ
µ
j ∈

{0, 1, . . . , n}, and neither ℓνj = ℓνm nor ℓµj = ℓµm if j ̸= m.
Since z∗ ∈ Cν ∩ Cµ = cone(y0,y1, . . . ,yk), there are
some constants λ∗i ≥ 0, i ∈ {0, 1, . . . , k}, such that z∗ =∑k

i=0 λ
∗
iyi. Let

{yk+1,yk+2, . . . ,yn} = {xµ
0 ,x

µ
1 , . . . ,x

µ
n}\{y0,y1, . . . ,yk},

i.e., yk+1,yk+2, . . . ,yn are the vertices of Sµ ⊂ Cµ that are
not also vertices of Sν ⊂ Cν . Since z ∈ Cµ there are some
constants λi ≥ 0, i ∈ {0, 1, . . . , n}, such that z =

∑n
i=0 λiyi.

Then

z− z∗ =

k∑
i=0

(λi − λ∗i )yi +

n∑
i=k+1

λiyi. (15)

Since V is continuous, it must hold that ∇Vν • x = ∇Vµ • x
for all x ∈ Cν ∩ Cµ. Therefore,

∇Vν • yi = ∇Vµ • yi for i ∈ {0, 1, . . . , k}. (16)

By combining (15) and (16), we obtain

(∇Vµ−∇Vν)•[z−z∗] =

n∑
i=k+1

λi(∇Vµ−∇Vν)•yi ≥ 0, (17)

where the inequality in (17) follows from λi ≥ 0 and (10).
Finally, since

z− z∗ = (1− t∗)[z− y]

and 1− t∗ ≥ 0, (17) implies

(∇Vµ −∇Vν) • [z− y] ≥ 0,

i.e., inequality (14), which concludes the proof.
With Lemma 1, Theorem 1 can finally be proven.

Proof of Theorem 1: For any x ∈ Rn, there is a Sν ∈ T
such that x ∈ Cν and thus

x =

n∑
i=0

λix
ν
i (18)

where λi ≥ 0 for all i ∈ {0, 1, . . . , n}. It then follows
from (6), (7), (8) and the convexity of the norm that

V (0) = V0 = 0

and

V (x) =

n∑
i=0

λiVxν
i
≥

n∑
i=0

λic1∥xν
i ∥

≥ c1

∥∥∥∥∥
n∑

i=0

λix
ν
i

∥∥∥∥∥ = c1∥x∥.

Hence V : Rn → R is positive definite and satisfies the lower
bound in (4). That the upper bound in (4) is satisfied by V
can trivially be shown with the Cauchy-Schwartz inequality
and the equivalence of norms on Rn.

That V satisfies (5), i.e., decreases after each timestep,
follows from (6), (9), (18) and Lemma 1: For all x ∈ Sν

and A ∈
⋃

s∈Sν ,s ̸=0

A(s)

V (Ax)− V (x) =V

(
A

n∑
i=0

λix
ν
i

)
−

n∑
i=0

λiVxν
i

=V

(
A

n∑
i=0

λix
ν
i

)
−

n∑
i=0

λiV (Axν
i )

+

n∑
i=0

λiV (Axν
i )−

n∑
i=0

λiVxν
i

=V

(
n∑

i=0

λiAx
ν
i

)
−

n∑
i=0

λiV (Axν
i )︸ ︷︷ ︸

≤0 because V is convex

+

n∑
i=0

λi
[
V (Axν

i )− Vxν
i

]︸ ︷︷ ︸
≤−c2∥xν

i ∥ from constraints (9)

≤− c2

∥∥∥∥∥
n∑

i=0

λix
ν
i

∥∥∥∥∥ = −c2∥x∥.



This result can be extended to all x ∈ Cν by positive
homogeneity of V and (1), which shows V is indeed a
Lyapunov function for (1).

IV. EXAMPLES

To demonstrate the method presented in this paper, two
examples will be discussed. Firstly, we will consider a system
with arbitrary switching as described in (2). Secondly, we will
consider a system with state-dependent switching as defined
in (3).

A. Arbitrary switched system
Consider the system

xk+1 ∈ {Axk : A ∈ co(A)} (19)

where
A =

{[
0 1

−0.8 0

]
,

[
0 1

−0.8 0.523

]}
.

This system is taken from [4], where it was shown to be
robustly strongly GAS. Furthermore, in [2] it was shown that
a system of the form (19) is robustly strongly GAS if and only
if the arbitrary switched linear system

xk+1 ∈ {Axk : A ∈ A}, (20)

is strongly GAS, which can be analyzed with Theorem 1.
The phase portrait of a sample trajectory of (20) with initial
condition

[
3 0

]⊤
is given in Fig. 1.

Using the method proposed in this paper, a convex CPA
Lyapunov function V is constructed using the triangulation T F

5

in R2. See, e.g., [17] for the definition of T F
K . The Lyapunov

function as a function of x is shown in Fig. 2 and the level
sets of the Lyapunov function are shown in Fig. 3.

B. State-dependent switched system
Consider system (3), where j ∈ {1, 2},

A1 =

[
1 0.01

−0.05 0.99

]
,

A2 =

[
1 0.05

−0.01 0.99

]
,

S1 = {x ∈ R2 | x21 ≥ x22},
and

S2 = {x ∈ R2 | x21 < x22}.
The example is taken from [8], where linear matrix inequalities
are used to construct piecewise quadratic Lyapunov functions
to state-dependent switched systems. In Fig. 4, the phase
portrait of the trajectory of the system with initial condition[
3 0

]⊤
is given. Note that the trajectory almost appears

continuous, since the system matrices A1 and A2 are close to
the identity matrix, i.e., the jump at each time-step is small.
The regions S1 and S2 are also shown in Fig. 4.

Using Theorem 1, a convex CPA Lyapunov function V can
be constructed for the example using the triangulation T F

5 in
R2. The Lyapunov function as a function of x is shown in
Fig. 5 and the level sets of the Lyapunov function are shown
in Fig. 6.

Fig. 1. Phase portrait of a trajectory of the arbitrary switched system.

Fig. 2. A convex CPA Lyapunov function of the arbitrary switched system.

Fig. 3. Level sets of the convex CPA Lyapunov function of the arbitrary
switched system.



Fig. 4. Phase portrait of a trajectory of the state-dependent switched system.

Fig. 5. A convex CPA Lyapunov function of the state-dependent switched
system.

Fig. 6. Level sets of the convex CPA Lyapunov function of the state-dependent
switched system.

V. CONCLUSION

In this paper, we have shown an LP problem that can
construct a convex CPA Lyapunov function for discrete-time
switched linear systems under arbitrary or state-dependent
switching with a globally asymptotically stable equilibrium.
The CPA Lyapunov function is defined over the entire state
space and thus proves global asymptotic stability of the origin,
which is an extension of the results in [6]. It was also shown
that, unlike [6], this method does not require the inclusion
of error bounds in the constraints of the LP problem, which
reduces the required refinement of the triangulation used to
construct the Lyapunov function.
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