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Abstract: Stability and performance of hybrid integrator-gain systems (HIGS) are mostly
analyzed using linear matrix inequalities (LMIs) to construct continuous piecewise quadratic
(CPQ) Lyapunov functions. To create additional methods for the analysis of HIGS and
other conewise linear systems, a method based on linear programming (LP) for constructing
continuous piecewise affine (CPA) Lyapunov functions is investigated. In this paper, it is shown
how linear programming can be used to prove input-to-state stability and calculate upper
bounds on the L1-gain and H1-norm. The numerical efficiency of this CPA (LP) method will
be compared to that of the CPQ (LMI) method on a numerical example involving HIGS.
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1. INTRODUCTION

In order to meet the ever increasing demand for precision
and throughput in high-tech motion systems, controllers
with progressively stricter performance requirements need
to be designed. Although linear time-invariant (LTI) con-
trollers are achieving high accuracy in many applica-
tions, they suffer from inherent limitations in performance
(Seron et al., 2011). Therefore, nonlinear controllers have
become a topic of interest, since they can potentially
overcome these limitations for LTI plants.

One such class of nonlinear controllers are hybrid con-
trollers, which includes, among others, reset control
(Clegg, 1958; Zaccarian et al., 2005) and hybrid integrator-
gain systems (HIGS) (Deenen et al., 2017). When evalu-
ated from a frequency domain approximation, these con-
trollers behave similarly to an LTI integrator, in that they
induce a 20 dB/decade amplitude decay, but only induce
38.15° phase lag (as opposed to 90° phase lag by an LTI
integrator). As such, these methods can potentially achieve
better performance than the LTI integrator. While reset
control uses discontinuous control actions, HIGS provides
a continuous control input, potentially making it more
suited for systems with higher-order dynamics and allow-
ing for easier analysis. HIGS-controlled systems have been
shown to be well-posed (Deenen et al., 2021; Heemels and
Tanwani, 2023) and to achieve better performance in high-
precision motion systems where previously LTI integrators
were used (van den Eijnden et al., 2020; Shi et al., 2023).

⋆ The research leading to these results has received funding from
the European Research Council under the Advanced ERC Grant
Agreement PROACTHIS, no. 101055384.

A disadvantage of HIGS compared to LTI integrators is,
however, that the tools for stability and performance anal-
ysis are more limited. An LTI plant in a feedback loop with
HIGS is namely transformed into a discontinuous conewise
linear system (Camlibel et al., 2006), where some of the
subdynamics are only active on a lower dimensional subset
of the state space. This causes frequency domain-based ap-
proaches for guaranteeing stability to be no longer directly
and non-conservatively applicable. Thus, alternate meth-
ods based on linear matrix inequalities (LMIs) have been
proposed for guaranteeing input-to-state stability (ISS) in
Deenen et al. (2021) and van den Eijnden et al. (2022). In
these methods, common quadratic (CQ) Lyapunov func-
tions and continuous piecewise quadratic (CPQ) Lyapunov
functions (Johansson and Rantzer, 1998) are constructed
to prove ISS. These methods can be extended to calculate
upper bounds on the H2-norm and L2-gain of conewise
linear systems, which are commonly used performance
metrics (Aangenent, 2008; van den Eijnden et al., 2022).

An alternative method for analyzing the stability of both
linear and nonlinear systems is to use linear program-
ming (LP) to construct continuous piecewise affine (CPA)
Lyapunov functions. Although not used for HIGS and
its variations so far, this method has already been well
discussed in the literature and several ways of formulating
the LP problem have been proposed, see, e.g., Polański
(1997, 2000), Blanchini (1994, 1995), Julian et al. (1999),
Ohta and Yamamoto (2000), Ohta and Tsuji (2003), Haf-
stein (2002), Johansson (2002), Milani (2004), Yfoulis and
Shorten (2004), Lazar and Doban (2011), Baier et al.
(2019), Samanipour and Poonawala (2023) and Andersen
et al. (2023). These existing results motivate to study



this CPA method for the specific class of HIGS-controlled
systems, which we will do in this paper.

We present three main contributions. Firstly, a theorem for
constructing CPA Lyapunov functions for HIGS-controlled
systems and general conewise linear system will be pre-
sented. The theorem is a modification of the CPA method
from Andersen et al. (2023) with regional relaxations in
the conditions of the LP problem. Secondly, it will be
shown that the presented theorem can also be extended
to calculate upper bounds on the L1-gain and H1-norm
of the system, which can be used as performance metrics.
Finally, the proposed method will be compared to the CPQ
method using LMIs in a numerical case study.

The remainder of this paper is structured as follows.
Section 2 introduces the notations and definitions used
throughout this paper. In Section 3 HIGS is discussed.
Section 4 presents the modified CPA method for the
stability analysis of conewise linear systems and for the
calculation of upper bounds on the L1-gain and H1-norm.
In Section 5 the CPA method will be compared to the
CPQmethod in a numerical case study. Finally, concluding
remarks are given in Section 6.

2. NOTATION AND DEFINITIONS

In this paper, the subset of Rn with nonnegative entries
is denoted by Rn

≥0
. Inequalities for vectors hold compo-

nentwise. The 1-norm of a vector x ∈ Rn is defined as
∥x∥1 =

∑n
i=1|xi|, where xi is the ith component of x.

Unless otherwise specified, ∥·∥ can be an arbitrary norm.

Definition 1. A signal x : R≥0 −→ Rn is piecewise contin-
uous (denoted by x ∈ PC) if there exists {tk}k∈N ⊂ R≥0,
where t0 = 0, tk+1 > tk for all k ∈ N, limk−→∞ tk = ∞, x
is continuous for all t ∈ R≥0 \ {tk}k∈N and limt−→t+

k
x(t) =

x(tk). If
∫∞
0

∥∥x(t)∥∥
1
dt < ∞ in addition to x ∈ PC, then

we write x ∈ PC1.

Consider a (possibly discontinuous) conewise linear system

ẋ(t) = Ajx(t) +Bw(t) if x(t) ∈ Xj

y(t) = Cx(t) +Dw(t)
(1)

with state x(t) ∈ Rn, disturbances w(t) ∈ Rm, output
y(t) ∈ Rp, all at time t ∈ R≥0, real matrices of appropriate
dimensions Aj , B, C and D, and subsets Xj ⊂ Rn, where
j ∈ {1, ...,M}, M ∈ N. The closure of Xj is described by
either a simplicial cone or the intersection of a simplicial
cone and a hyperplane, i.e.,

X̄j = {x ∈ Rn | Fjx ≥ 0 ∧Πjx = 0},
where Fj ∈ Rn×n is an invertible matrix and Π⊤

j ∈ Rn is
an n-dimensional row vector. The signal x : R≥0 −→ Rn

is a solution to (1) in the sense of Carathéodory, if x is
absolutely continuous and (1) is satisfied for almost all t ∈
R≥0 (Walter, 1998). Existence and forward completeness
of solutions is assumed, which for HIGS-controlled systems
can be proven if w ∈ PC (Heemels and Tanwani, 2023).
Since the derivative of a solution x can be ill-defined, the
Dini-derivative is used instead in those cases, defined by

D+x(t) = lim sup
h→0+

x(t+ h)− x(t)

h
.

To make the notion of stability of discontinuous systems
precise, we introduce the following definitions and theorem

from Heemels and Weiland (2008), which are based on the
work of Sontag (1989).

Definition 2. System (1) is said to be input-to-state stable
(ISS), if there exist a KL-function 1 β and a K-function γ,
such that for any initial state x(0) ∈ Rn and any bounded
input w ∈ PC, any corresponding solution x of (1) satisfies∥∥x(t)∥∥ ≤ β

(∥∥x(0)∥∥ , t)+ γ

(
sup

0≤τ≤t

∥∥w(τ)∥∥) ∀t ∈ R≥0.

Definition 3. A locally Lipschitz continuous function V :
Rn −→ R is said to be an ISS Lyapunov function for system
(1), if it satisfies for all solutions x and corresponding
w ∈ PC

α1(||x(t)||) ≤ V (x(t)) ≤ α2(||x(t)||) and (2a)

D+V (x(t)) ≤ −α3(||x(t)||) + α4(
∥∥w(t)∥∥) (2b)

for all t ∈ R≥0, where α1, α2 and α3 are K∞-functions and
α4 is a K-function.

Theorem 4. If there exists an ISS Lyapunov function for
(1), then (1) is ISS.

Finally, consider the following performance metrics.

Definition 5. (Ebihara et al., 2011) The L1-gain, i.e., the
L1-induced norm, of (1) is defined as the infimal value of
γ for which ∫ ∞

0

∥∥y(t)∥∥
1
dt ≤ γ

∫ ∞

0

∥∥w(t)∥∥
1
dt

for all w ∈ PC1, x(0) = 0 and any corresponding output y.

Definition 6. TheH1-norm of system (1) corresponding to
an initial value x(0) = x0 is defined as the infimal value of
δ for which ∫ ∞

0

∥∥y(t)∥∥
1
dt ≤ δ,

for any output y given initial condition x(0) = x0 and
w(t) = 0 for all t ∈ R≥0.

The H1-norm is defined in line with the H2-norm of hybrid
systems (Aangenent, 2008; van den Eijnden et al., 2022).

3. HYBRID-INTEGRATOR GAIN SYSTEMS

In continuous-time, HIGS can be described by

H :


ẋh(t) = ωhe(t) if (e(t), u(t), ė(t)) ∈ F1 (3a)

xh(t) = khe(t) if (e(t), u(t), ė(t)) ∈ F2 (3b)

u(t) = xh(t)

with state xh(t) ∈ R, error e(t) ∈ R and its derivative
ė(t) ∈ R, control action u(t) ∈ R, all at time t ∈ R≥0,
parameters ωh, kh ∈ [0,∞) and subsets F1, F2 ⊂ R3. The
mode (3a) is called the integrator mode and the mode (3b)
the gain mode. The subsets F1 and F2 are defined by

F :=F1 ∪ F2 = {(e, u, ė) ∈ R3 | kheu ≥ u2}
F1 :=F\F2

F2 :={(e, u, ė) ∈ R3 | u = khe ∧ ωhe
2 > kheė}.

The HIGS can be interpreted as follows: Assume that
(e, u, ė) ∈ F at t = 0, e.g., if xh(0) = 0. Then, standardly,
the integrator mode is active. However, if the integrator
dynamics would cause (e, u, ė) to leave the set F , then

1 We adopt the standard definitions for K-, K∞- and KL-functions
from Definitions 4.2 and 4.3 in Khalil (2002).



the gain mode is momentarily activated. This ensures that
(e, u, ė) lies in F for all t ∈ R≥0.

The HIGS controller above is placed in a negative feedback
loop with the LTI system G given by

G :


ẋg(t) = Agxg(t) +Bguu(t) +Bgww(t)

e(t) = Cgexg(t) +Dgeuu(t) +Dgeww(t)

y(t) = Cgyxg(t) +Dgyuu(t) +Dgyww(t)

with state xg(t) ∈ Rng , control action u(t) ∈ R, distur-
bances w(t) ∈ Rm, error e ∈ R, output y ∈ Rp, all at time
t ∈ R≥0, and matrices Ag,Bgu, Bgw, Cge, Cgy,Dgeu,Dgyu,
Dgew and Dgyw of appropriate dimensions. The system G
includes plant dynamics and potentially LTI controllers
present in the control loop. Provided that the transforma-
tions from u and w to e in G have relative degree two or
higher, the HIGS-controlled system can be described by

ẋ(t) =

{
A1x(t) +Bw(t) if Hx(t) ∈ F1

A2x(t) +Bw(t) if Hx(t) ∈ F2

y(t) = Cx(t) +Dw(t),

(4)

where x =
[
x⊤
g xh

]⊤
∈ Rn with n = ng + 1,[

Ak B
C D

]
=

 Ag −Bgu Bgw

Ah,k 0 01×m

Cgy −Dgyu Dgyw

 ,

Ah,1 = ωhCge, Ah,2 = khCgeAg

and

H =

 Cge 0
01×ng

1
CgeAg 0

 .

Note that (4) can be written as a conewise linear system
(1), since regions F1 and F2 can be partitioned into
subregions Xj that satisfy (2).

4. STABILITY & PERFORMANCE ANALYSIS WITH
LINEAR PROGRAMMING

In order to guarantee ISS of (4), an ISS Lyapunov function
is parameterized using linear programming. This parame-
terization makes use of a triangulation of the domain of the
state space. In this section, the specifics of the triangula-
tion will be discussed and it will be shown how to construct
a CPA Lyapunov function with linear programming. To
show that this method can be applied to a broader class of
systems than just the HIGS-controlled system (4), we will
consider the general class of conewise linear systems (1).

4.1 The triangulation

Typically, a triangulation is a set of simplices, but for the
purpose of this paper it is more convenient to use simplicial
cones as the state equation of system (1) is homogeneous
of degree one. A simplicial cone Si ⊂ Rn is the positive
hull of n linearly independent vertices ri1, ..., r

i
n, i.e.,

Si =

{
x ∈ Rn | x =

n∑
k=1

λkr
i
k for some λk ≥ 0

}
= {x ∈ Rn | Eix ≥ 0},

where Ei :=
[
ri1 ... rin

]−1

.

Let X :=
⋃M

j=1 Xj be the domain of the state x. Then, a
triangulation T of X is a partitioning of X into a collection
of simplicial cones {S1, ...,SN}, N ∈ N, that satisfies

X =
⋃N

i=1 Si. The triangulation T is shape-regular if all Si

and Sj , where i, j ∈ {1, ..., N} and i ̸= j, either intersect in
a common face or not at all. An example of a shape-regular
triangulation is the triangulation T F

K from Andersen et al.
(2023), where K ∈ Rn is a measure of how refined the
triangulation is. We will use the triangulation T F

K for the
numerical case study in Section 5.

4.2 Construction of CPA Lyapunov functions

To parameterize a CPA function using a triangulation T
of X , a value Vr is assigned to each unique vertex r of
a simplicial cone in T . Then, a CPA Lyapunov function
candidate can be described by

V (x) = v⊤i Eix if x ∈ Si, (5)

where v⊤i =
[
Vri1

... Vrin

]
, i ∈ {1, ..., N} and the depen-

dency of x(t), w(t) and y(t) on t is from here on omitted
for brevity where possible. Note that V is positively ho-
mogeneous of degree one, V is locally Lipschitz continuous
by construction, V (rik) = Vri

k
for all k ∈ {1, ..., n} and

the value of V (x) in (5) is found by linearly interpolating
between the values of V (rik) and V (0) = 0.

The following theorem poses conditions under which (5) is
an ISS Lyapunov function.

Theorem 7. Consider system (1) and a shape-regular tri-
angulation T of X . Suppose there exist variables Vr, γ,
δ ∈ R, nonnegative vectors uij ∈ Rn

≥0, real variables

lij ∈ R, where i ∈ {1, ..., N} and j ∈ {1, ...,M}, and
constants ϵ1, ϵ2 > 0 such that:

(i) for every vertex r of a simplicial cone in T
Vr ≥ ϵ1∥r∥ ;

(ii) for all i ∈ {1, ..., N}, j ∈ {1, ...,M} and k ∈ {1, ..., n}

(v⊤i EiAj + u⊤
ijFj + lijΠj)r

i
k ≤ −ϵ2

∥∥∥rik∥∥∥−∥∥∥Crik

∥∥∥
1
;

(iii) for all i ∈ {1, ..., N} and l ∈ {1, ...,m}
±v⊤i EiBel ≤ γ∥el∥1 −∥Del∥1 ,

where el is the lth standard unit vector of Rm;
(iv) given x0 ∈ Sq

v⊤q Eqx0 ≤ δ.

Then (5) is an ISS Lyapunov function of (1). Additionally,
γ is an upper bound on the L1-gain of (1) and δ is an
upper bound on the H1-norm corresponding to an initial
condition x(0) = x0 of (1).

Proof. Firstly, it is proven that V satisfies condition (2a).
Because of (i) and the triangle inequality, V satisfies

V (x) = v⊤i Eix = v⊤i Ei

n∑
k=1

λkr
i
k =

n∑
k=1

λk(v
⊤
i Eir

i
k)

=

n∑
k=1

λkVri
k
≥

n∑
k=1

λkϵ1

∥∥∥rik∥∥∥ = ϵ1

n∑
k=1

λk

∥∥∥rik∥∥∥
≥ ϵ1

∥∥∥∥∥∥
n∑

k=1

λkr
i
k

∥∥∥∥∥∥ = ϵ1∥x∥ .



Moreover, from the Cauchy-Schwarz inequality and the
equivalence of norms it follows that

V (x) = v⊤i Eix = E⊤
i vi • x ≤

∣∣∣E⊤
i vi • x

∣∣∣
≤
∥∥∥E⊤

i vi

∥∥∥
2
∥x∥2 ≤ c1∥x∥

for some positive constant c1. Thus V satisfies (2a).

Secondly, it is proven that V satisfies condition (2b). Note
that, if x(t) ∈ Si and x(t + δt) ∈ Si for an infinitesimal
small time step δt, then

D+V (x) = v⊤i Ei(Ajx+Bw) ∀x ∈ Xj .

Furthermore, note that by Farkas’ lemma and the Fred-
holm alternative, the condition

v⊤i Ei(Ajx+Bw) < −c2∥x∥+ c3∥w∥ ∀x ∈ X̄j\{0}
for some c2, c3 > 0 and all w ∈ Rm, is equivalent to

v⊤i Ei(Ajx+Bw) + u⊤
ijFjx+ lijΠjx <

− c2∥x∥+ c3∥w∥ ∀x ∈ Rn\{0}.
(6)

Thus, by proving (6), we can prove V satisfies condition
(2b). Since x ∈ Si for some i ∈ {1, ..., N}, x =

∑n
k=1 λkr

i
k

for some λk ≥ 0. Similarly, w =
∑m

l=1 µlel for some real
variables µl. Thus, (ii) and (iii) imply that

D+V (x) ≤ (v⊤i EiAj + u⊤
ijFj + lijΠj)x+ v⊤i EiBw

=(v⊤i EiAj + u⊤
ijFj + lijΠj)

n∑
k=1

λkr
i
k + v⊤i EiB

m∑
l=1

µlel

=

n∑
k=1

λk(v
⊤
i EiAj + u⊤

ijFj + lijΠj)r
i
k +

m∑
l=1

µlv
⊤
i EiBel

≤
n∑

k=1

λk(−ϵ2

∥∥∥rik∥∥∥−∥∥∥Crik

∥∥∥
1
) +

m∑
l=1

|µl| (γ∥el∥1 −∥Del∥1)

≤− ϵ2∥x∥ −∥Cx∥1 −∥Dw∥1 + γ∥w∥1 (7)

≤− ϵ2∥x∥ −∥y∥1 + γ∥w∥1 . (8)

Eq. (7) proves (6) and therefore V satisfies (2b) and V is
an ISS Lyapunov function of (1).

Thirdly, it is shown that γ is an upperbound on the L1-
gain. By integrating both sides of (8) from 0 to T > 0, we
obtain that∫ T

0

D+V (x(t))dt = V (x(T ))− V (x(0))

≤− ϵ2

∫ T

0

∥∥x(t)∥∥dt− ∫ T

0

∥∥y(t)∥∥
1
dt+ γ

∫ T

0

∥∥w(t)∥∥
1
dt.

(9)

Since V is a positive definite function and given x(0) = 0
(see Definition 5), this implies that

γ

∫ T

0

∥∥w(t)∥∥
1
dt ≥

∫ T

0

∥∥y(t)∥∥
1
dt

for all T > 0, which proves γ is an upper bound on the
L1-gain of (1) when T −→ ∞.

Finally, we will prove that δ is an upper bound on the
H1-norm corresponding to an initial condition x(0) = x0.
Since w(t) = 0 ∀t ∈ R≥0 (see Definition 6) and therefore
limT−→∞ V (x(T )) = 0 (because the system is ISS), it
follows from (iv) and (9) that

δ ≥ v⊤q Eqx0 = V (x(0)) ≥
∫ ∞

0

∥∥y(t)∥∥
1
,

which proves δ is an upper bound on the H1-norm corre-
sponding to initial condition x0 of (1). 2

Note that Theorem 7 is a feasibility problem, which
can be expressed as a linear programming problem with
optimization variables Vr, γ, δ, uij and lij , constants ϵ1
and ϵ2 and linear constraints (i)-(iv).

Remark 8. Systems with discontinuous state equations
such as (4) can have robust stability issues (Goebel et al.,
2012). To obtain robust stability guarantees, the stability
of the Krasovskii regularization of (4), which is defined as

ẋ(t) ∈

{
A1x(t) +Bw(t) if Hx(t) ∈ F1\F̄2

co(A1x(t), A2x(t)) +Bw(t) if Hx(t) ∈ F̄2

e(t) =Cx(t) +Dw(t),

where co(F) denotes the closed convex hull of a set F ⊂
Rn, should be studied. It can be shown that the conditions
in Theorem 7 can guarantee stability of the Krasovskii
regularized system as well.

5. NUMERICAL CASE STUDY

In this section, the CPA method will be used to analyze
the stability of a HIGS-controlled system and it will be
compared to the method in van den Eijnden et al. (2022).
This method, based on the work of Johansson and Rantzer
(1998), amounts to a set of linear matrix inequalities
(LMIs), which, if feasible, prove the existence of a contin-
uous piecewise quadratic (CPQ) Lyapunov function. To
solve the LP and LMI problems, the solver Mosek (2023)
implemented in Matlab with Yalmip (2004) is used.

5.1 System description

Consider the LTI mass-spring-damper system

G :



ẋg(t) =

[
0 1

−k/m −b/m

]
xg(t)−

[
0

1

]
u(t) +

[
0

1

]
w(t)

e(t) =
[
1 0
]
xg(t)

y(t) =

[
1 0

0 0

]
xg(t) +

[
0

1

]
u(t),

where m = b = k = 1. The LTI system is placed in a
negative feedback loop with HIGS as discussed in Section
3. The resulting HIGS-controlled system can be described
by (4) or (1).

It is discussed by Andersen et al. (2023) that it is beneficial
to the CPA method to introduce state transformations
that cause the level sets of Lyapunov functions to resemble
hyperspheres. The reason is that it reduces the required
refinement of the triangulation T F

K . For HIGS-controlled
systems specifically, the fact that the integrator mode is
the dominant mode of the system can be exploited by
introducing the state transformation

x̂ = V −1x,

where the columns of V are the real and, if applicable,
imaginary parts of the normalized eigenvectors of A1,
not counting complex conjugates. We make use of this
transformation in the following results.



Fig. 1. ISS region found using time-series simulations
(grey), ISS combinations (kh, ωh) found using the
CPA method with triangulation T F

5 (black) and ISS
combinations (kh, ωh) found using the CPQ method
with triangulation T F

2 (black and red).

5.2 Stability analysis

For multiple combinations (kh, ωh) we check whether the
HIGS-controlled system is ISS using extensive time-series
simulations (to serve as a baseline), the CPA method with
Theorem 7 and the CPQ method with LMIs from van den
Eijnden et al. (2022). The CPA method and the CPQ
method will be given a similar amount of computation time
(∼ 103 s), so that the comparison gives an indication of
which method is computationally more efficient. See Fig. 1.

Notice that the CPA method is capable of using a finer
triangulation (T F

5 , which has N = 1200 simplicial cones)
than the CPQ method (T F

2 , which has N = 192 simplicial
cones) given a similar amount of computation time. This
is because the CPQ method involves a larger number
of optimization variables given the same triangulation.
Therefore, the CPQ method has a larger time complexity
given the same triangulation. Despite this, however, it can
be seen that the CPQ method can verify the stability of
more combinations (kh, ωh) than the CPA method. This is
due to the fact that the CPQ Lyapunov functions require a
less dense triangulation than the CPA Lyapunov functions.
When removing the restriction on computation time, it
was found that the CPA method could find the same ISS
combinations (kh, ωh) as the CPQ method. However, the
CPA method required more computation time than the
CPQ method to do so.

Note that in realistic industrial applications, the damping
is typically much lower and the size of the HIGS-controlled
system much larger than in the use case considered here.
See for example the case in van den Eijnden et al. (2020).
When studying such systems, it was found that the gap
in accuracy between the CPA and CPQ methods only
increased when the damping was lowered and/or when the
size of the HIGS-controlled system increased.

5.3 Performance analysis

Next, we show how Theorem 7 can be used to calculate
upper bounds on the L1-gain and H1-norm of the HIGS-

Fig. 2. Upper bound on L1-gain and H1-norm calculated
using Theorem 7 for various triangulations T F

K (grey).
Additionally, using time-series simulations, a lower
bound on the L1-gain and an estimate of the H1-norm
are calculated (black).

controlled system. Note that with the CPQ method also
upper bounds on these two metrics could be calculated,
but it would require conservative estimates, e.g., related
to the equivalence of norms. The value of kh is fixed to 1
and the value of ωh is varied over [0.5, 2.5]. Then, using
Theorem 7, upper bounds on the L1-gain and H1-norm

(corresponding to an initial condition x(0) =
[
1 0 0

]⊤
)

are calculated. See Fig. 2, where for different triangulations
T F
K the L1-gain and the H1-norm are calculated using LP.

In Fig. 2, we also show the true value of the H1-norm and
a lower bound on the L1-gain determined using time-series
simulations. It can be seen that the LP problem defined in
Theorem 7 produces an increasingly tight upper bound on
the L1-gain and H1-norm as the refinement K of the trian-
gulation T F

K increases. The remaining difference between
the calculated upper bounds and the results from the
time-series simulations could be caused by conservatism in
Theorem 7, numerical artifacts or limited computational
power.

6. CONCLUSION

In this paper, extensions to the CPA method have been
proposed to make it suitable for the ISS analysis of HIGS-
controlled systems and conewise linear systems in general.
A theorem was presented that poses conditions for the
existence of a CPA Lyapunov function and upperbounds
on the L1-gain and H1-norm of the system. These con-
ditions can be checked with a linear programming prob-
lem that uses regional relaxations in its conditions. The
proposed extensions to the CPA method were numerically
demonstrated on a HIGS-controlled system. While it was
shown that the modified CPA method can be used for the
stability analysis of HIGS-controlled systems, it was also
shown that this method appears to be computationally less
efficient than the CPQ method. In order to make the CPA
method a more reliable alternative, efforts will have to be
made in order to improve the computational efficiency of
this linear programming-based approach.
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