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Abstract: We describe a linear programming (LP) problem to parameterize continuous and piecewise quadratic (CPQ)
Lyapunov functions for switched linear systems. We discuss some algorithms and data-structures for its im-
plementation in C++ and compare the computational efficiency of our implementation to an analogous imple-
mentation in MATLAB.

1 INTRODUCTION

Switched systems play an important role in modelling
in science and engineering (Davrazos and Kous-
soulas, 2001; Liberzon, 2003; Shorten et al., 2007;
Sun and Ge, 2011). In control theory the stability
of an equilibrium point is commonly of central im-
portance and is most conveniently dealt with using
the Lyapunov stability theory of dynamical systems
(Hahn, 1967; Sastry, 1999; Khalil, 2002; Vidyasagar,
2002). It is well known that the existence of a Lya-
punov function for a switched system, which is a
common Lyapunov function for all the subsystems,
is equivalent to its stability and suitable classes of po-
tential Lyapunov functions is a thoroughly researched
subject (Dayawansa and Martin, 1999; Goebel et al.,
2006; Mason et al., 2006; Shorten et al., 2007; Ma-
son et al., 2022). In this paper we consider the al-
gorithm from (Palacios Roman et al., 2024) to pa-
rameterize continuous and piecewise quadratic (CPQ)
Lyapunov functions for switched linear systems along
with its efficient implementation in the programming
language C++. The class of CPQ Lyapunov func-
tions have been considered in (Johansson and Rantzer,
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1998), and have recently been successfully used to
study the stability of, hybrid integrator-gain systems
(HIGS), see e.g. (van den Eijnden et al., 2020; Dee-
nen et al., 2021; van den Eijnden et al., 2022).

The main contribution of this work is the effi-
cient computation of CPQ Lyapunov functions for
switched linear systems based on a linear program,
where the classical constraints for CPQ Lyapunov
functions, which are often expressed in terms of lin-
ear matrix inequalities, are formulated as a linear pro-
gramming (LP) problem.

This paper is organized as follows: In Section 2
we describe how we write the LP problem in our im-
plementation, before we discuss in Section 3 trian-
gulations, CPQ functions, and how we parameterize
them. Section 4 deals with the linear constraints we
use to compute a suitable parameterization for a CPQ
Lyapunov function for a given switched linear system.
Then, in Section 5, we give some details on the imple-
mentation of the linear constraints and compare the
numerical efficiency of our implementation in C++
to a corresponding implementation in MATLAB. We
conclude the paper in Section 6.

2 WRITING OUR LP PROBLEM

An LP feasibility problem can be characterized using
a matrix A ∈ Rr×c, a vector b ∈ Rr, and an enum vec-
tor s, si ∈ {LE,GE,EQ}, having r elements. A feasible
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solution to the LP problem is a vector x ∈Rc that sat-
isfies

[Ax]i [si] bi, for all i = 1,2, . . . ,r,
where [Ax]i is the i-th component of the vector Ax.
This means that

[Ax]i ≤ bi, if si is LE,

[Ax]i = bi, if si is EQ,

and [Ax]i ≥ bi, if si is GE.
Since the matrix A is usually sparse, we implement
it using two vectors, rn and cn, of row and column
indices, respectively, and one vector of values val.
The vector b is implemented by the vector b and the
vector of symbols s by the enum TypeCon {LE,GE,EQ}
vector con.

The vectors rn, cn and val will all have the same
number of elements, namely the number of non-zero
elements of A, and to set the (i, j)-th element of A to
some non-zero value x, i.e. ai, j :=x, we write

rn[k]=i; cn[k]=j; val[k]=x;

A constraint of the LP problem is written in a row of
the matrix A. A column of A corresponds to a vari-
able. More exactly, the columns of A contain the co-
efficients with which the corresponing variable in the
vector Variables appears in the constrains of the LP
problem. The Variables vector is described below.

2.1 Storing the Variables

To implement a variable of the LP problem we use
an Armadillo (Sanderson, 2010) integer vector ivec.
For example, the variable ϕν

k,ℓ is ivec {'P',nu,k,l},
where nu, k and l are some numbers of type bint (big
integer, i.e. long long). All the variables of the prob-
lem are stored together in the sorted vector Variables.

In order to sort the Variables vector we need to
define an order relation. We first let the variable’s
length dictate the relation. If the variables have the
same length we compare the first non-equal elements
or last elements, which ever comes first. This is im-
plemented with the following binary function:

1 bool varCmp(const ivec &x, const ...
ivec &y) {

2 if (x.size() < y.size()) {
3 return true;
4 }
5 else if (x.size() > y.size()) {
6 return false;
7 }
8 int i, len = x.size();
9 for(i=0; i < len -1 && x(i) == ...

y(i); i++) {};
10 return x(i) < y(i);
11 }

We also implement a function, VarID, that ob-
tains the index of a variable in Variables. That is,
if var=Variables(i) then VarID(var) returns i. If the
variable is not in Variables we return the impossible
value −1. The function is as follows:

1 bint VarID(const ivec &v){
2 auto found = ...

equal_range(Variables.begin(), ...
Variables.end(), v, varCmp);

3 if( found.first == found.second ){
4 return -1;
5 }
6 else{
7 return found.first - ...

Variables.begin();
8 }
9 }

2.2 Construction of the Matrix A

Since each row of the matrix A corresponds to a con-
straint, it is preferable to write this matrix in a row-
by-row manner. We implement the function, new_aij,
that writes a new nonzero element of A or modi-
fies a nonzero value, and a function, close_constr,
that “closes” the constraint, such that the next call to
new_aij will write an element in the next row. We
store the current index of rn, cn and val in the bint
variable Index, and the current row number in the int
variable ConstrNr. The corresponding functions are
as follows:

1 void new_aij(const ivec ...
&variable , double value){

2 bint VID = VarID(variable);
3 assert(VID !=-1);
4 for (bint i = Index - 1; i >= 0 ...

&& rn[i] == ConstrNr; i--) {
5 if (cn[i] == VID) {
6 val[i] += value;
7 return;
8 }
9 rn.push_back(ConstrNr);

10 cn.push_back(VID);
11 val.push_back(value);
12 Index++;
13 }
14 }

1 void close_constr(TypeCon Type , ...
double _b){

2 con.push_back(Type);
3 b.push_back(_b);
4 ConstrNr++;
5 }
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2.3 Minimal LP Example

As a minimal example for our format, consider the
constraints

3x− y ≤ 5 (1)
x+2y = 7.

We need the following variables:

1 using bint = long long;
2 using namespace std;
3 using namespace arma;
4 bint Index;
5 int ConstrNr;
6 vector <ivec > Variables
7 vector <bint > rn, cn;
8 vector <double > val, b;
9 enum TypeCon {LE, EQ, GE};

10 vector <TypeCon > con;

The constraints can be implemented as:

1 vector <ivec > Variables={ ...
ivec{'x'}, ivec{'y'}};

2 rn[0]=0; cn[0]=0; val[0]=3;
3 rn[1]=0; cn[1]=1; val[1]=-1;
4 con[0]=LE; b[0]=5;
5 rn[2]=1; cn[2]=0; val[2]=1;
6 rn[3]=1; cn[3]=1; val[3]=2;
7 con[1]=EQ; b[1]=7;

or alternatively with new_aij and close_constr as:

1 vector <ivec > Variables={ ...
ivec{'x'}, ivec{'y'}};

2 new_aij(ivec {'x'},3);
3 new_aij(ivec {'y'},-1);
4 close_constr(LE ,5);
5 new_aij(ivec {'x'},1);
6 new_aij(ivec {'y'},2);
7 close_constr(EQ ,7);

Note that 'x' and 'y' are interpreted as their ASCII
dec equivalents, that is 120 and 121 respectively.

The purpose of the structure discussed above is
to act as a parser between the problem formulation
and the linear solver we use to solve the LP problems,
Gurobi (Gurobi Optimization, LLC, 2023). The same
example using the Gurobi interface for C would be
given by

1 int vars = 2;
2 int constrs = 2;
3 size_t vbeg[] = {0, 2};
4 int vlen[] = {2, 2};
5 int vind[] = {0, 1, 0, 1};
6 double vval[] = {3.0, 1.0, -1.0, ...

2.0};
7 char sense[] = ...

{GRB_LESS_EQUAL ,GRB_EQUAL};

8 double rhs[] = {5.0, 7.0};
9 error = GRBXloadmodel(env, ...

&model , "example", vars , ...
constrs , 1, 0.0, NULL , sense , ...
rhs, vbeg , vlen , vind , vval , ...
NULL , NULL , NULL , NULL , NULL);

The syntax of this interface has two main draw-
backs; it is rather opaque and one can easily overwrite
a previously declared nonzero element of the matrix
A accidentally. If, for example, we obtained the 3x
in (1) via a sum (x+2x) and wrote

1 int vlen[]={3, 2};
2 int vind[]={0, 0, 1, 0, 1};
3 double vval[]={1.0, 2.0, 1.0, ...

-1.0, 2.0};

we would overwrite the first instance 1.0 ·x with 2.0 ·x
rather than adding them together. A parser is easily
implemented:

1 // var_size = Variables.size()
2 // rncnval_size = rn.size()
3 for(int v=0,j=0;v < var_size;v++){
4 vbeg[v]=j;
5 for(int k=0;k < rncnval_size;k++){
6 if(cn[k] == v){
7 vval[j]=val[k];
8 vind[j]=rn[k];
9 j++;

10 }
11 }
12 }

3 CPQ FUNCTIONS

In order to parameterize a CPQ function, we use a
triangulation of the domain of the function. We will
first discuss the specifics of a suitable triangulation T .
Then, a prelude on the parameterization of continuous
and piecewise affine (CPA) functions will be given,
from which the parameterization of CPQ functions
using the triangulation T will follow naturally. Note
that our parameterization of CPQ Lyapunov functions
largely follows (Johansson, 1999).

3.1 Triangulation

A triangulation T with vertices {v1,v2, . . . ,vp} ⊂ Rn

is a subdivision of a subset of Rn into simplices S. A
simplex Sν is defined as

Sν :=co{xν
0,x

ν
1, . . . ,x

ν
n}

=

{
x ∈ Rn : x =

n

∑
i=0

λixν
i ,λi ≥ 0,

n

∑
i=0

λi = 1

}
,
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Figure 1: Triangulation T1 with simplices and vertices in-
dexed.

where xν
i = vgν(i) for i = 0,1, . . . ,n and gν :

{0,1, . . . ,n} −→ {1,2, . . . , p} is an index-function. For
our purposes, we require the triangulation T to
be shape-regular, i.e., every two different simplices
Sν,Sµ ∈ T either intersect in a common lower-
dimensional face or do not intersect at all. Further, we
demand that xν

0 = 000 and that the vectors xν
1,x

ν
2, . . . ,x

ν
n

are linearly independent for all Sν ∈ T . Finally, the
set theoretic union of all Sν ∈ T , denoted DT , must
be a neighbourhood of the origin of Rn.

An efficient implementation of a triangulation
that satisfies these requirements is the triangular fan
(T std

K,fan)
F discussed in (Hafstein, 2019), from here on

denoted simply by TK , where a formula for all xν
i is

given. The vertices {v1,v2, . . . ,vp} of the triangula-
tion TK are

{000}∪
{

K
∥z∥2

z : z ∈ Zn,∥z∥
∞
= K

}
,

where the scaling parameter K ∈ N determines the
fineness of the triangulation around zero. The num-
ber of simplices in the triangulation TK is given by
the formula 2n ·Kn−1 · n!. The triangulation T1 in R2

is depicted in Figure 1.

3.2 Prelude on CPA Functions

To parameterize CPA functions on the whole space
Rn, we associate a cone Cν to each simplex Sν ∈ T ,
defined as

Cν :=cone{xν
1,x

ν
2, . . . ,x

ν
n}

=

{
x ∈ Rn : x =

n

∑
i=1

λixν
i ,λi ≥ 0

}
.

We refer to the vector λλλ = (λi)i=1,2,...,n ∈ Rn
+ as the

cone coordinates of x in Cν. Additionally, we define

the matrix Xν := [xν
1, . . . ,x

ν
n] ∈ Rn×n. Note that for

this definition we must assume that the order of the
vertices of each Sν is fixed.

For a CPA function W : Rn →R defined using the
triangulation T we have for every x ∈ Cν that W (x) =
wT

ν x, where

wT
ν =

[
W (xν

1),W (xν
2), . . . ,W (xν

n)
]
X−1

ν .

Just note that for all x ∈ Cν we have x = Xνλλλ and thus

W (x) = wT
ν x (2)

=
[
W (xν

1),W (xν
2), . . . ,W (xν

n)
]
X−1

ν Xνλλλ

=
n

∑
i=1

λiW (xν
i ).

To implement the computation of W using LP, it is
advantageous to define the vector of variables Φ∈Rp,
where ϕ j = W (v j), j = 1,2, . . . , p. Then W (xν

i ) =
ϕgν(i) for every vertex xν

i = v j, i = 0,1, . . . ,n, of some
Sν ∈ T . Next, we define the vector

Ψ
ν :=

(
ϕgν(1),ϕgν(2), . . . ,ϕgν(n)

)T

for every Sν ∈ T . Then

W (x) = (Ψν)T
λλλ

by (2), where λλλ ∈ Rn
+ are the cone coordinates of

x ∈ Cν.
That W is well-defined and continuous now fol-

lows easily from the fact that the vertices xν
1, . . . ,x

ν
n

of every Sν ∈ T are linearly independent and that T
is shape-regular: Since T is shape-regular, Cν ∩Cµ =
cone{y1,y2, . . . ,y j}, where j < n and the yi are the
common nonzero vertices of Sν and Sµ, i.e., yi =
xν

ki
= xµ

ℓi
for some ki, ℓi ∈ {1, . . . ,n} and gν(ki) =

gµ(ℓi) for all i = 1, . . . , j. Then, for all x ∈ Cν ∩Cµ

x =
j

∑
i=1

λiyi =
j

∑
i=1

λixν

ki
=

j

∑
i=1

λix
µ
ℓi
,

for some unique λλλ, because of the linear indepen-
dence of the vertices. Hence

(Ψν)T
λλλ =

j

∑
i=1

λiϕgν(ki) =
j

∑
i=1

λiϕgµ(ℓi) = (Ψµ)T
λλλ

and W is well-defined on Cν ∩ Cµ and continuous,
since it is the restriction of the continuous functions
x 7→ wT

ν x and x 7→ wT
µ x to Cν ∩Cµ. Hence, the vector

ϕϕϕ ∈Rp and the functions gν connect the different for-
mulas W (x) = wT

ν x, Sν ∈ T , such that the resulting
function

W (x) = wT
ν x if x ∈ Cν

is well-defined and continuous.
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3.3 Representation of CPQ Functions

For representing a CPQ function V : Rn →R, i.e., V is
continuous and V (x) = xT Pνx for a symmetric matrix
Pν ∈Rn×n on each Sν ∈ T , we can proceed similarly
as in the CPA case. However, now we need a p× p
matrix Φ ∈Rp×p of variables, such that for a simplex
Sν ∈ T we have

Pν = (X−1
ν )T

Ψ
νX−1

ν ,

where the (k, ℓ)-th entry of the matrix Ψν ∈ Rn×n is
equal to ϕgν(k),gν(ℓ), which is the (gν(k),gν(ℓ))-th en-
try of Φ.

Then, for an x = ∑
n
i=1 λixν

i ∈ Cν, i.e., x = Xνλλλ

with λλλ ∈ Rn
+, we have

V (x) = xT Pνx

= λλλ
T XT

ν (X−1
ν )T

Ψ
νX−1

ν Xνλλλ

= λλλ
T

Ψ
ν
λλλ

=
n

∑
k,ℓ=1

λkλℓϕgν(k),gν(ℓ).

(3)

That V is well-defined and continuous follows simi-
larly as for the CPA case: For all x ∈ Cν ∩Cµ

x =
j

∑
i=1

λiyi =
j

∑
i=1

λixν

ki
=

j

∑
i=1

λix
µ
ℓi
,

for some ki, ℓi ∈ {1, . . . ,n} and a unique λλλ. Since

xT Pνx =
j

∑
r=1

λr(xν

kr
)T (X−1

ν )T
Ψ

νX−1
ν

j

∑
s=1

λsxν

ks

=
j

∑
r=1

λreT
kr

Ψ
ν

j

∑
s=1

λseks

=
j

∑
r,s=1

λrλsϕgν(kr),gν(ks),

where ei is the i-th unit vecotor of Rn. Likewise,
xT Pµx = ∑

j
r,s=1 λrλsϕgµ(ℓr),gµ(ℓs) and it can be con-

cluded that

xT Pνx = xT Pµx
because gν(ki) = gµ(ℓi) for i = 1,2, . . . , j. Thus, V is
well-defined and continuous.
Remark 1. Note that gν(0), i.e. the index of the zero
vertex vk = 000, is never needed in the formulas above.

4 COMPUTING A CPQ
LYAPUNOV FUNCTION

Consider a switched linear system with arbitrary
switching

ẋ(t) = A(t)x(t), A(t) ∈ A := {A1,A2, . . . ,AN},

where A : R+ −→ A is an arbitrary right-continuous
piecewise constant mapping and N ∈ N is finite. As
discussed in the Introduction, the origin is asymptoti-
cally stable for the system, if and only if there exists a
Lyapunov function for the system, i.e., a locally Lip-
schitz function V : Rn → R that satisfies

V (x)> 0 ∀x ∈ Rn\{000}, (4)
V (000) = 0,

⟨∇V (x),Aix⟩< 0 ∀x ∈ Rn\{000},
∀i ∈ {1,2, . . . ,N},

where ⟨∇V (x),Aix⟩ denotes the inner product of the
vectors ∇V (x) and Aix. Strictly speaking ∇V (x) is
the Clarke’s subdifferential (Clarke, 1990), which in
our CPQ case means that for x ∈ Cν ∩Cµ we need〈

∇(xT Pνx),Aix
〉
< 0 and

〈
∇(xT Pµx),Aix

〉
< 0.

Going into details would go beyond the scope of this
paper and we refer the interested reader to the litera-
ture (Clarke et al., 1998; Baier et al., 2012).

If V is CPQ and parameterized as in (3), then con-
ditions (4) are equivalent to

xT Pνx > 0 ∀x ∈ Cν\{000}
xT Qν

i x < 0 ∀x ∈ Cν\{000}
∀i ∈ {1,2, . . . ,N}

for all Sν ∈ T , where Qν
i := AT

i Pν +PνAi. We will
refer to these conditions as Pν and Qν

i being posi-
tive definite (p.d.) and negative definite (n.d.), respec-
tively, on the cone Cν.

4.1 Reexpression of Constraints

Now it is desired to reexpress the condition on Qν
i into

one that can be verified with LP. Note that for x ∈ Cν

we can write x = Xνλλλ, where λλλ ∈ Rn
+ are the cone

coordinates of x. Thus we can define a matrix

Bν
i = XT

ν Qν
i Xν

= XT
ν (AT

i (X
−1
ν )T

Ψ
νX−1

ν +(X−1
ν )T

Ψ
νX−1

ν Ai)Xν

=
(
Ψ

νX−1
ν AiXν

)T
+Ψ

νX−1
ν AiXν

= (ΨνÂν
i )

T +Ψ
νÂν

i ,

where Âν
i = X−1

ν AiXν. Then we define a matrix Cν
i

such that cν,i
k,k = bν,i

k,k and cν,i
k,ℓ = max{0,bν,i

k,ℓ} for all

k, ℓ ∈ {1,2, . . . ,n}, where bν,i
k,ℓ and cν,i

k,ℓ are the (k, ℓ)-
th entries of Bν

i and Cν
i , respectively.

Consider the next proposition.

Proposition 1. If the sum ∑
n
ℓ=1 cν,i

k,ℓ < 0 for all k ∈
{1,2, . . . ,n}, then Qν

i is n.d. on the cone Cν.
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Sketch of proof. We will provide a sketch of the proof
here; a detailed proof will be presented in an upcom-
ing paper (Palacios Roman et al., 2024).

Because the off-diagonal elements of Cν
i are posi-

tive, the conditions ∑
n
ℓ=1 cν,i

k,ℓ < 0 force the matrix Cν
i

to be a diagonally dominant and n.d. matrix. Because
of how Cν

i is defined from Bν
i , λλλ

TCν
i λλλ ≥ λλλ

T Bν
i λλλ for all

λλλ ∈Rn
+. Thus, Bν

i is n.d. on the cone Rn
+, from which

it follows that Qν
i is n.d. on Cν.

Finally, we can implement the max function in
cν,i

k,ℓ = max{0,bν,i
k,ℓ} with the constraints cν,i

k,ℓ ≥ 0 and

cν,i
k,ℓ ≥ bν,i

k,ℓ. Then, the conditions on Cν
i become

cν,i
k,ℓ ≥

n

∑
r=1

(
ψℓ,râ

ν,i
r,k +ψk,râ

ν,i
r,ℓ

)
cν,i

k,ℓ ≥ 0

for all k, ℓ ∈ {1,2, . . .n} and k ̸= ℓ and

2
n

∑
r=1

ψk,râ
ν,i
r,k +

n

∑
ℓ=1
ℓ̸=k

ck,ℓ < 0.

for all k ∈ {1,2, . . . ,n}.

4.2 Constraints of the LP Problem

Equipped with the above results, the final constraints
for the LP problem can now be summarized. On
every simplex Sν := co{000,xν

1,x
ν
2, . . . ,x

ν
n}, we have

Xν = [xν
1,x

ν
2, . . . ,x

ν
n] and index-function gν such that

xν
i = vgν(i). The constraints are then given by:

1. V (vi)> 0 for all vi ∈ T .

2. For each system define Âν
i := X−1

ν AiXν and Cν
i

such that

cν,i
k,k = 2

n

∑
r=1

ϕgν(r),gν(k)â
ν,i
r,k , (5)

for all k ∈ {1, . . . ,n} and

cν,i
k,ℓ ≥

n

∑
r=1

(
ϕgν(ℓ),gν(r)â

ν,i
r,k +ϕgν(k),gν(r)â

ν,i
r,ℓ

)
,(6)

cν,i
k,ℓ ≥ 0

for all k, ℓ∈ {1, . . . ,n} and k ̸= ℓ. Then require for
each Sν ∈ T that

n

∑
ℓ=1

cν,i
k,ℓ < 0 ∀k ∈ {1,2, . . . ,n}.

The problem variables are the elements of the matri-
ces Φ and Cν

i .

S0

v5 = x0
1

v8 = x0
2

v4 = x0
0

Figure 2: Simplex S0 with its vertices indexed. For
example, with simNo=0 and vertNo=1 the functions
VertexNr(simNo,VertNo) and Vertex(simNo,VertNo)
return the int 5 and Armadillo vector [1,0]T respectively.

Remark 2. Note that V (vi) > 0 for all nonzero ver-
tices vi of T does not ensure that V (x) > 0 for all
x ∈ Rn \{000}. This can however be checked a posteri-
ori to solving the LP problem by checking whether
there exists a solution to the linear matrix inequal-
ity (LMI)

Pν − (X−1
ν )TUνX−1

ν ≻ 0,

where Uν ∈ Rn×n
+ is the problem variable and A ≻ B

means that A−B is a symmetric and positive definite
matrix. This a posteriori check was proposed in (Jo-
hansson, 1999, Proposition 4.4).

5 IMPLEMENTATION AND
COMPARISON

In our implementation the object corresponding to
the simplicial complex TK provides the functions
VertexNr(simNo,VertNo), to obtain the vertex num-
ber analogous to the indexing function gν(i), and
Vertex(simNo,VertNo) to obtain the vertex vector
analogous to xν

i (see Figure 2). With these functions
we can define our variables and construct our con-
straints discussed in Section 4.2.

Note that since Φ is a sparse symmetric matrix, we
only need to define variables for the upper triangular
half. Further, we only need ϕk,ℓ if vk and vℓ are non-
zero vertices of the same simplex and then we define
var = ivec {'P', min(k,l), max(k,l)}. For exam-
ple for the simplex in Figure 2 we only need ϕ5,8, ϕ5,5
and ϕ8,8. To avoid unnecessary checks and multiple
definitions of variables, we first define the variables
above the diagonal in this way, and subsequently the
diagonal ϕk,k, k = 1, . . . , p. Note that where the index
for the zero vertex can be skipped, as it is not used in
the constraints.

Furthermore, each Cν
i is a symmetric n×n matrix

so we only need the upper triangular half of the ele-
ments. In fact, we only need the elements above the
diagonal since the diagonal is equal to Bν

i , so rather
than using cν,i

k,k in the constraint we can directly use
the right hand side of (5).
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In this way we can define each variable, push into
the Variables vector and then sort it.

All that is left to complete the setup of the LP
problem is defining the constraints. This is were
the benefit of our structure defined in Section 2 is
most apparent since there is no need to keep track of
whether a variable appears twice in a sum, as in (6), or
not. We can simply go through each constraint using
new_aij to add the coefficient of each summand and
close_constr before moving to the next constraint.

As an alternative, we could use a parser such as
YALMIP (Löfberg, 2004) in MATLAB (The Math-
Works Inc., 2023) to solve for Φ. This would admit-
tedly entail a less convoluted set-up process since we
could create matrix variables and don’t need to imple-
ment the max function with an intermediate variable
like Cν

i . However, since MATLAB is an interpreted
language it doesn’t benefit from the efficiency asso-
ciated with compiled languages, in our case the effi-
ciency of the GNU Compiler g++.

For comparison consider the arbitrarily switched
linear system discussed in (Andersen et al., 2023;
Polanski, 1997; Pyatnitskii, 1971; Brockett, 1966)
with subsystems given by

A1 =

[
0 1

−0.01 −2

]
and A2 =

[
0 1

−11.7 −2

]
.

We can compute a CPQ Lyapunov function with a
scaling factor K ≥ 4 and run the computations twenty
times for each K. As can be seen in Figure 3, the av-
erage time for each scaling factor using the C++ im-
plementation is roughly 1/200th of the time needed
when using MATLAB. We used the SDPT3 (Toh
et al., 1999) solver in the MATLAB implementation
and Gurobi version 11 for the C++ implementation.
Additional MATLAB tooling to speed up the compu-
tations like the MATLAB Coder can not be utilized to
minimize computation time without major changes to
YALMIP.

6 CONCLUSIONS

We presented the implementation of a method to com-
pute continuous and piecewise quadratic (CPQ) Lya-
punov functions for switched linear systems in C++;
such a Lyapunov function is a common Lyapunov
function for all the linear subsystems. We compared
our implementation to an analogous implementation
in MATLAB and showed that the C++ implementa-
tion is more than 100 times faster for an example sys-
tem from the literature. We expect this difference in
computational speed to be representative for the gen-
eral case, as the setup of the linear programming (LP)

5 10 15 20

10
-2

10
0

matlab

C++

Figure 3: Comparison of the computational time for param-
eterizing Lyapunov functions with our method in MATLAB
and C++; run on i9900K (8 cores) under Linux Mint. Aver-
age computation time of twenty tests as a function of trian-
gulation scaling factor K in TK . Note that the C++ code is
ca. 200 times faster than the MATLAB code.

problem used to parameterize the CPQ Lyapunov
function is quite involved and an interpreted computer
language like MATLAB is at a great disadvantage in
comparison to a compiled language like C++.
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