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1 Introduction1

Meshfree collocation is an established method to solve (generalized) inter-2

polation problems such as partial differential equations, see e.g. [25] for the3

general method and [18] for applications to the computation of Lyapunov4

functions. The framework for this method is a linear (differential) operator5

L, which acts on a Hilbert space H with inner product ⟨., .⟩H , consisting of6

functions v : Ω ⊂ Rd → R. We consider the problem7

Lv(x) = r(x), x ∈ Ω (1)

for v, where r is a given function. Fixing a set of finitely many collocation8

points XΩ = {x1, . . . , xN} ⊂ Ω, we find an approximation by solving the9

generalized interpolation problem10

minimize ∥v∥H
subject to Lv(xi) = r(xi) for xi ∈ XΩ.

The solution of the generalized interpolation problem is given by

v∗(x) =
N∑
j=1

βjvλj
(x),

where βj ∈ R are coefficients and vλj
are the Riesz representers of the

linear operators λj = δxj ◦ L ∈ H∗; δxj denotes the point evaluation at
xj . If H is a reproducing kernel Hilbert space with positive definite kernel
K : Ω × Ω → R, then the Riesz representer is given by vλj

(x) = λyjK(x, y),
i.e.

v∗(x) =

N∑
j=1

βjλ
y
jK(x, y).

Here, the superscript y denotes the evaluation of λj with respect to the11

variable y. The coefficient vector β = (βj)j=1,...,N is found by solving12

Aβ = r, where the vector r = (rj)j=1,...,N is given by rj = r(xj) and13

A = (aij)i,j=1,...,N with aij = λxi λ
y
jK(x, y) is a positive definite matrix if14

all collocation points xj are regular, i.e. λj ̸= 0. Hence, the solution of the15

generalized interpolation problem can be computed by solving a system of16

N linear equations. The method can also be used to solve boundary value17

problems, using different operators for the boundary points. If (1) has a18

solution v, then there are error estimates on Lv − Lv∗ which involve the19

fill distance hXΩ,Ω = supy∈Ω infxi∈XΩ
∥y − xi∥2, measuring how dense the20

collocation points are in Ω.21

In this paper, we seek to generalize this approach by also considering22

linear inequalities. We consider again a reproducing kernel Hilbert space H23

2



of functions v : Ω → R with positive definite kernel K as well as a linear1

operator L acting on H. We seek to solve a problem of the form2 {
Lv(x) = r(x), x ∈ Γ,
Lv(x) ≤ b(x), x ∈ Ω \ Γ,

where Γ ⊂ Ω; both Γ = ∅ and Γ = Ω are possible, although the latter3

case is the classical interpolation problem. To obtain a unique solution, we4

consider the minimization problem5 
minimize ∥v∥H
subject to Lv(x) = r(x), x ∈ Γ,

Lv(x) ≤ b(x), x ∈ Ω \ Γ,
(2)

for v, where r and b are given functions. Fixing two sets of finitely many6

collocation points XΓ = {x1, . . . , xM} ⊂ Γ and XΩ = {xM+1, . . . , xM+N} ⊂7

Ω \ Γ, we discretize the problem, leading to8 
minimize ∥v∥H
subject to Lv(xi) = r(xi), xi ∈ XΓ,

Lv(xi) ≤ b(xi), xi ∈ XΩ.

(3)

It turns out that the solution of (3) is given by

v∗(x) =

M+N∑
j=1

βjλ
y
jK(x, y),

where λj = δxj ◦ L and that the coefficients βj can be calculated as the9

unique solution of a quadratic optimization problem. We will show the10

strong convergence in H of solutions of the discretized problems (3) to the11

(unique) solution of (2) if the fill distances of the collocation points go to12

zero. The discretized problem has already been studied in [14].13

In the second part of the paper, we apply the results to an important14

problem from dynamical systems, namely the computation of complete Lya-15

punov functions for continuous-time dynamical systems given by an au-16

tonomous ODE.17

A similar approach was used in [15], which deals with minimization prob-18

lems with only inequality constraints and thus has to use a cost function19

including an integral, since otherwise the solution would be trivial. In this20

paper, we consider both inequality and equality constraints.21

Let us give an overview over the paper: In Section 2 we state and prove22

our main result. In Section 3 we apply the general method to the problem23

of computing complete Lyapunov functions, present examples in Section 424

and end with conclusions in Section 5.25
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2 Minimization problem1

We assume that Ω ⊆ Rd is a bounded domain with Lipschitz boundary. Let2

Γ ⊂ Ω; note that both Γ = ∅ and Γ = Ω are allowed, however, the latter case3

is the classical generalized interpolation. Further, let L : Hσ(Ω) → Hσ−m(Ω)4

be a linear, bounded operator, where Hσ(Ω) denotes, as usual, the L2-5

Sobolev space of (fractional) order σ > d/2 +m+ 1 with m ∈ N0.6

Remark 2.1 We call a point x ∈ Rd singular point of the linear operator7

L, if δx ◦ L = 0 and regular point of L otherwise.8

Remark 2.2 An example for L is a linear differential operator of order9

m ∈ N0 given by10

Lv =
∑

|α|≤m

cαD
αv,

where all cα ∈ Cσ−m(Ω). Here, a singular point x is a point such that11

cα(x) = 0 for all |α| ≤ m.12

Note that the definition in Remark 2.1 in the context of differential13

operators was given in [18, Definition 3.2].14

Let H be a reproducing kernel Hilbert space (RKHS) that consists of15

the functions Hσ(Ω). However, Hσ(Ω) is not necessarily equipped with the16

standard inner product, but in general with one inducing an equivalent norm.17

For a brief overview of reproducing kernel Hilbert spaces with the relevant18

definitions and theorems, see [15, Section 2]; a more detailed introduction19

can be found in [25, Chapters 10 and 16].20

We consider the problem:21 
minimize ∥v∥H
subject to Lv(x) = r(x), x ∈ Γ

Lv(x) ≤ b(x), x ∈ Ω \ Γ
(4)

with continuous functions r, b : Ω → R. The main result of this section22

is that this problem has a unique solution v and, moreover, that it is the23

limit of a strongly convergent sequence of solutions of discretized problems.24

Those discretized problems can be formulated as finite dimensional quadratic25

programming problems.26

Let us first consider the discretized problem: choose finite sets of regular27

points of the operator L (see Remark 2.1) XΓ = {x1, . . . , xM} ⊂ Γ and28

XΩ = {xM+1, . . . , xM+N} ⊂ Ω \ Γ; again, M = 0 or N = 0 are allowed.29

Furthermore, let λi ∈ H∗ be given by λi(v) = Lv(xi), i = 1, . . . ,M + N ,30

as well as ri = r(xi), i = 1, . . . ,M and bi = b(xM+i), i = 1, . . . , N . We31

will deal with the discretized problems in Section 2.1. In Section 2.2 we will32

establish the strong convergence of the solutions of the discretized problems33

to the solution of (4), under the assumption that the fill distance of the34

discretization points goes to zero.35
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2.1 Discretized version1

The discretized version was introduced and discussed in [14]. In this section2

we will recall the main results, see [14, Lemmas 5.1-5.3], and then expand3

by discussing the Karush-Kuhn-Tucker (KKT) conditions for this problem,4

which are first derivative tests for a solution in nonlinear programming to5

be optimal.6

Proposition 2.3 We consider the problem for v ∈ H7 
minimize ∥v∥H
subject to λi(v) = ri, i = 1, . . . ,M

λi(v) ≤ bi, i =M + 1, . . . ,M +N
(5)

where ri, bi ∈ R, H is a reproducing kernel Hilbert space with kernel K,8

inner product ⟨·, ·⟩H and norm ∥ · ∥H , and λi ∈ H∗, i = 1, . . . ,M + N are9

linearly independent.10

Then the unique minimizer of problem of (5) is of the form (6)11

v∗(x) =
N∑
j=1

βjλ
y
jK(x, y), (6)

where the coefficient vector β = (βj)j=1,...,N is defined by the unique solution12

of the minimization problem13 
βTAβ

subject to B1β = r ∈ RM

and B2β ≤ b ∈ RN .
(7)

Here, A =

(
B1

B2

)
, B1 ∈ RM×(M+N), B2 ∈ RN×(M+N) and aij = λxi λ

y
jK(x, y).14

Summarizing, the problem (5) has a unique solution that can be com-15

puted using the finite-dimensional quadratic optimization problem (7).16

For the remainder of this subsection we study the relation between the in-17

equality conditions and the corresponding coefficients βj , j =M+1, . . . ,M+18

N using KKT conditions, following [8].19

Proposition 2.4 Consider problem (7) and let β∗ ∈ RM+N be the solution.20

Then β∗i ≤ 0 for all i =M + 1, . . . ,M +N .21

Moreover, for each i ∈ {M+1, . . . ,M+N}, if (B2β
∗)i < bi, then β

∗
i = 0.22

Proof: We denote the i-th row (or column) of the symmetric matrix A by23

ai, i = 1, . . . ,M +N . The discrete problem (7) can be expressed as24

min F0(β) = βTAβ
such that Hi(β) = aTi β − ri = 0 for i = 1, . . . ,M

Fi(β) = aTi β − bi ≤ 0 for i =M + 1, . . . ,M +N.
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Note that the functions Fi are convex, Hi are affine and they all are dif-1

ferentiable, and the refined Slater’s condition is satisfied, since all constraint2

functions Fi, i = M + 1, . . . ,M + N are affine. Hence, the KKT condi-3

tions provide necessary and sufficient conditions for optimality, see e.g. [8,4

Chapter 5.5.3]. In more detail, β∗ is a minimiser if and only if the KKT5

conditions hold. Here, µ and ν are the KKT multipliers; for problems with6

no inequality constraints, these would be Lagrange multipliers.7

Hi(β
∗) = 0 for i = 1, . . . ,M

Fi(β
∗) ≤ 0 for i =M + 1, . . . ,M +N

µi ≥ 0 for i = 1, . . . , N

µiFM+i(β
∗) = 0 for i = 1, . . . , N

0 = ∇F0(β
∗) +

N∑
i=1

µi∇FM+i(β
∗) +

M∑
i=1

νi∇Hi(β
∗).

These conditions become in our case8

aTi β
∗ = ri for i = 1, . . . ,M

aTi β
∗ ≤ bi for i =M + 1, . . . ,M +N

µi ≥ 0 for i = 1, . . . , N

µi(a
T
M+iβ

∗ − bM+i) = 0 for i = 1, . . . , N (8)

0 = 2Aβ∗ +

N∑
i=1

µiaM+i +

M∑
i=1

νiai

The last equation can be equivalently written as9

0 = A

(
2β∗ +

(
ν
µ

))
(9)

Since ai are the columns of the (symmetric) matrix A. From (9) we can10

deduce, since A is non-singular, that11

β∗ = −1

2

(
ν
µ

)
. (10)

Since µi ≥ 0 for all i = 1, . . . , N , this implies that β∗i ≤ 0 for all i =12

M+1, . . . ,M+N . From (8) it follows for each i = 1, . . . , N that if aTM+iβ
∗ <13

bM+i, then µi = 0, i.e. β∗i = 0. □14

2.2 Convergence15

We now consider again problem (4) and will show that it has a unique16

solution, which is the limit of solutions to the discretized problem.17
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Theorem 2.5 Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary.1

Let Γ ⊂ Ω; note that Γ = ∅ and Γ = Ω are allowed.2

Let L : Hσ(Ω) → Hσ−m(Ω) be a linear, bounded operator, where m ∈ N03

and σ > d/2 + m + 1. Let b, r : Ω → R be continuous functions and4

H = Hσ(Ω) with norm ∥ · ∥H := ∥ · ∥kσ induced by the reproducing kernel5

kσ : Ω × Ω → R, given by kσ(x, y) = Φσ(x − y), x, y ∈ Ω, where Φσ is a6

suitable, positively definite function.7

Consider the optimization problem for v ∈ H8 
minimize ∥v∥H
subject to Lv(x) = r(x), x ∈ Γ,

Lv(x) ≤ b(x), x ∈ Ω \ Γ.
(11)

Moreover, we assume the existence of V0 ∈ Hσ(Ω) satisfying the con-9

straints of (11) as well as10

� let Xn
N = {xn1 , . . . , xnMn+Nn

} ⊂ Ω be a set of pairwise distinct and11

regular points of L (cf. Remark 2.1) for all n ∈ N. Set Xn
Γ :=12

{xn1 , xn2 , . . . , xnMn
} and Xn

Ω := {xnMn+1, x
n
Mn+2, . . . , x

n
Mn+Nn

}.13

� Xn
Γ ⊆ Γ and Xn

Ω ⊆ Ω \ Γ.14

� the fill distances hXn
Γ ,Γ

= supx∈Γminxi∈Xn
Γ
∥x − xi∥2 (if Γ ̸= ∅) and15

hXn
Ω,Ω\Γ = supx∈Ω\Γminxi∈Xn

Ω
∥x − xi∥2 (if Ω \ Γ ̸= ∅) converge to 016

as n→ ∞.17

For n ∈ N, we denote by vn the (unique) solution v of the following18

problem19 
minimize ∥v∥H
subject to Lv(xni ) = r(xni ), i = 1, . . . ,Mn,

Lv(xni ) ≤ b(xni ), i =Mn + 1, . . . ,Mn +Nn.

(12)

Then the optimization problem (11) has a unique solution v. Moreover,20

the solutions vn of the optimization problems (12) converge strongly in H to21

v as n→ ∞.22

Proof: We fix n ∈ N and observe that the optimization problem (12) is23

of the form (5). Indeed, since Ω has a Lipschitz boundary and σ > d/2,24

H := Hσ(Ω) is a RKHS. On Hσ(Ω), we choose an inner product ⟨·, ·⟩H =25

⟨·, ·⟩Hσ(Ω) = ⟨·, ·⟩kσ induced by kσ(x, y) = Φσ(x − y), x, y ∈ Ω, where kσ26

is a reproducing kernel with positive definite function Φσ : Rd → R. In27

particular, we have g(x) = ⟨g, kσ(·, x)⟩H for all g ∈ H and x ∈ Ω, see [15,28

Definition 2.1].29
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Note that the functionals λi = δxn
i
◦ L lie in H∗, since L is a continuous1

map from Hσ(Ω) to Hσ−m(Ω) and σ > d/2+m. These functionals are also2

linearly independent, because xni are regular points of L, cf. [18, Proposition3

3.3]. Thus, the problem (12) is of the form (5) with those λi, ri = r(xni )4

for i = 1, . . . ,Mn, bi = b(xni ) for i =Mn + 1, . . . ,Mn +Nn and M =Mn as5

well as N = Nn.6

We will show the strong convergence of the sequence (vn)n∈N of solutions7

of (12) to an element v ∈ H, which turns out to be the unique solution of8

(11).9

Step 1 We can conclude from (11) that10

LV0(x
n
i ) = r(xni ), i = 1, . . . ,Mn

LV0(x
n
i ) ≤ b(xni ), i =Mn + 1, . . . ,Mn +Nn.

This shows that V0 satisfies the constraints of (12). Since vn is the minimizer11

of this problem, we have12

∥vn∥H ≤ ∥V0∥H =: C0. (13)

This shows that the bounded sequence ∥vn∥H has a subsequence, which13

we again denote by (vn)n∈N, that converges weakly to a function v ∈ H.14

Moreover, we have15

∥v∥H ≤ lim inf
n→∞

∥vn∥H ≤ C0. (14)

For Steps 2-4, we denote by (vn)n∈N any fixed weakly convergent subse-16

quence of the original sequence; we will show the convergence of the original17

sequence in Step 5.18

Step 2 In this step, we will show Lv(x) = r(x) for all x ∈ Γ and Lv(x) ≤ b(x)19

for all x ∈ Ω\Γ; recall that v is the weak limit of the (sub)sequence (vn)n∈N.20

Let λ = δx ◦ L ∈ H∗. Then the Riesz representer of λ is given by21

λykσ(·, y) and hence22

|Lv(x)− Lvn(x)| = |λ(v − vn)| = |⟨v − vn, λ
ykσ(·, y)⟩H | −→ 0, (15)

since vn converges weakly to v.23

By a similar argumentation as above, the Sobolev space Hσ−m(Ω) is also24

a RKHS and we choose the inner product to be defined by a reproducing25

kernel of the form kσ−m(x, y) = Φσ−m(x − y), where Φσ−m : Rd → R. The26

Sobolev embedding theorem implies Hσ−m(Rd) ⊆ W 1
∞(Rd) ∩ C1(Rd) since27

σ −m > d/2 + 1. Thus, there exists M > 0 with ∥∇Φσ−m(ξ)∥2 ≤M for all28

ξ ∈ Rd.29
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Given x, y ∈ Ω, we use the mean value theorem which implies the exis-1

tence of ξ ∈ Rd on the line between 0 and x− y to show that2

|Lvn(x)− Lvn(y)|
= ⟨Lvn, kσ−m(·, x)− kσ−m(·, y)⟩Hσ−m(Ω)

≤ ∥Lvn∥Hσ−m(Ω)∥kσ−m(·, x)− kσ−m(·, y)∥Hσ−m(Ω)

= ∥Lvn∥Hσ−m(Ω) (kσ−m(x, x) + kσ−m(y, y)− 2kσ−m(x, y))1/2

≤
√
2c0∥vn∥Hσ(Ω) (Φσ−m(0)− Φσ−m(x− y))1/2

≤
√
2c0C0∥∇Φσ−m(ξ)∥1/22 ∥x− y∥1/22

≤ C1∥x− y∥1/22 (16)

for all n ∈ N by (13) and with C1 =
√
2c0C0M

1/2. Note that we have also3

used that L : Hσ(Ω) → Hσ−m(Ω) is a bounded operator with norm c0 and4

the identity5

λxµykσ−m(x, y) = ⟨λxkσ−m(·, x), µykσ−m(·, y)⟩Hσ−m(Ω). (17)

Step 2a: equality constraints If Γ ̸= ∅, then we will show Lv(x) = r(x) for6

all x ∈ Γ. More precisely, we let x ∈ Γ and ε > 0, and will show that7

|Lv(x)− r(x)| < ε.8

By (15), there exists N1 ∈ N such that for all n ≥ N1 we have9

|Lv(x)− Lvn(x)| <
ε

3
. (18)

Since r is continuous at x ∈ Γ ⊂ Ω, there exists δ > 0 such that10

|r(x)− r(y)| < ε

3
(19)

for all y ∈ Bδ(x).11

Using that the fill distance satisfies hXΓ,Γ → 0 as n→ ∞, there is N2 ∈ N12

such that there exists xni ∈ Xn
Γ for all n ≥ N2 with13

∥x− xni ∥2 < min

(
ε2

9C2
1

, δ

)
. (20)

Let n ≥ max(N1, N2). By (18), (16), (20), (19) and Lvn(xi) = r(xni ), we14

have that15

|Lv(x)− r(x)| ≤ |Lv(x)− Lvn(x)|+ |Lvn(x)− Lvn(x
n
i )|

+ |Lvn(xni )− r(xni )|+ |r(xni )− r(x)|

<
ε

3
+ C1

ε

3C1
+ 0 +

ε

3
= ε.

9



Step 2b: inequality constraints If Ω\Γ ̸= ∅, then we will show Lv(x) ≤ b(x)1

for all x ∈ Ω \ Γ. More precisely, we let x ∈ Ω \ Γ and ε > 0, and will show2

that Lv(x)− b(x) < ε.3

(15) implies the existence of N1 ∈ N such that4

|Lv(x)− Lvn(x)| <
ε

3
(21)

for all n ≥ N1. By the continuity of b at x ∈ Ω, there exists a δ > 0 such5

that6

|b(x)− b(y)| < ε

3
(22)

for all y ∈ Bδ(x).7

Using that the fill distance satisfies hXΩ,Ω\Γ → 0 as n → ∞, there is8

N2 ∈ N such that there exists xni ∈ Xn
Ω for all n ≥ N2 with9

∥x− xni ∥2 < min

(
ε2

9C2
1

, δ

)
. (23)

Let n ≥ max(N1, N2). Then (21), (16), (23), and (22) as well as Lvn(xi) ≤10

b(xni ) imply11

Lv(x)− b(x) = (Lv(x)− Lvn(x)) + (Lvn(x)− Lvn(x
n
i ))

+ (Lvn(x
n
i )− b(xni )) + (b(xni )− b(x))

<
ε

3
+ C1

ε

3C1
+ 0 +

ε

3
= ε.

12

Step 3 In Step 2 we have shown that Lv(x) = r(x) holds for all x ∈ Γ and13

Lv(x) ≤ b(x) holds for all x ∈ Ω \ Γ. Hence, v satisfies the constraints of14

(12) for each n ∈ N and thus15

∥vn∥H ≤ ∥v∥H

since vn is the minimizer of (12).16

This implies lim supn→∞ ∥vn∥H ≤ ∥v∥H and, using (14), also17

lim
n→∞

∥vn∥H = ∥v∥H ,

and thus that vn converges strongly to v.18

Step 4 We first show that v is a minimizer. Let V ∈ H satisfy the constraints
of (11), i.e. V also satisfies satisfies the constraints of the discrete problem
for every n. Hence,

∥vn∥H ≤ ∥V ∥H

10



and by the strong convergence, we can conclude ∥v∥H ≤ ∥V ∥H , which shows1

that v is a minimizer. The uniqueness of the minimizer v ∈ H follows from2

the strict convexity of ∥ · ∥H and the fact that the constraints are affine.3

Step 5: Original sequence We have shown that every weakly convergent sub-4

sequence of the original sequence (vn)n∈N (see Step 1) necessarily converges5

strongly to v, the unique solution of (11). Now we establish that the original6

sequence (vn)n∈N of solutions to (12) converges strongly to v. We argue by7

contradiction and assume that there exists ε > 0 and a subsequence (vnk
)k∈N8

such that9

∥vnk
− v∥H ≥ ε for all k ∈ N. (24)

(vnk
)k∈N is bounded and thus has a weakly convergent subsequence. But we10

have shown that this subsequence converges weakly, and then strongly, to11

v, which is a contradiction to (24). □12

3 Complete Lyapunov functions13

We will now apply the general theory, developed in the previous section, to14

the problem of computing complete Lyapunov functions. Let us consider15

the general autonomous ODE16

ẋ = f(x), where x ∈ Rd. (25)

We are interested in the determination of the chain-recurrent set R, which17

contains attractors and repellers, and the stability of its connected com-18

ponents via a complete Lyapunov function (CLF). A complete Lyapunov19

function is a function V : Rd → R, which is non-increasing along solutions of20

(25) and even strictly decreasing along solutions outside the chain-recurrent21

set R. Moreover, V (R) is a subset of R, which is nowhere dense, and the22

level sets of V in R, V −1(r)∩R ≠ ∅ for r ∈ R, are the chain-transitive com-23

ponents of R, see [9, §6.4], [21, §4]. A CLF provides even more information24

about the dynamics and the long-term behaviour of the system through its25

values, e.g. an asymptotically stable equilibrium is a local minimum and the26

values on different connected components of the chain-recurrent set describe27

the dynamics between them.28

Relaxing the assumptions on a CLF, we call a function V that is non-29

increasing along trajectories, a CLF candidate. If V is C1, then this can30

be formulated as V (x) ≤ 0, where V̇ (x) = ∇V (x) · f(x) is the orbital31

derivative, i.e. the derivative along solutions of (25). A constant function32

is automatically a CLF candidate as it satisfies V̇ (x) = 0 ≤ 0, however, it33

does not provide any insight into the dynamics. The larger the area, where34

11



V is strictly decreasing, the more information the CLF candidate provides1

regarding the dynamics.2

Several methods have been proposed to compute CLFs. In [24, 5, 20], a3

discrete-time dynamical system was defined by the dynamics between cells4

through a multivalued time-T map, computed using the software package5

GAIO [10]. A complete Lyapunov function was computed via graph algo-6

rithms [5]. The paper [7] proposed the construction of a complete Lyapunov7

function as continuous piecewise affine (CPA) function on a given simplicial8

complex, but required information on the location of local attractors. In9

[1, 2, 3], CLF candidates are computed by solving10

V̇ (x) = −1 (26)

with meshfree collocation, in particular using Radial Basis Functions (RBFs);11

however, note that (26) cannot be satisfied at all points in the chain-recurrent12

set, and thus the error estimates from meshfree collocation cannot be em-13

ployed.14

A modified problem with a different cost function, namely15

minimize ∥V ∥2H +
∫
Ω V̇ (x) dx

subject to V̇ (x) ≤ 0 for x ∈ Ω,

was considered in [15] and the strong convergence of the discretized prob-16

lems was shown. The solutions of this problem have values very close to 0,17

however, no information about the chain-recurrent set is required.18

We now apply the theory of the previous section to the problem of com-19

puting a CLF (candidate). We consider the problem20 
minimize ∥V ∥H
subject to LV (x) = −1, x ∈ Γ

LV (x) ≤ 0, x ∈ Ω \ Γ

where Γ is a subset of the area of gradient-like flow. The inequality constraint21

guarantees that V is a complete Lyapunov function candidate, while the22

equality constraint ensures that V ≡ 0 is not the solution.23

For the proof of Theorem 3.2, we require the existence of a complete24

Lyapunov function with prescribed orbital derivative, which is established25

in the following theorem from [17].26

Theorem 3.1 Let ẋ = f(x) define a dynamical system on an open set27

Ω ⊂ Rd with f ∈ Ck(Ω,Rd), where k ∈ N ∪ {∞}.28

Then for every compact set Γ ⊂ Ω \ R, where R denotes the chain-29

recurrent set, and every Ck-function g : U → (−∞, 0) defined on a neighbor-30

hood U ⊂ Ω of Γ there exists a complete Ck-Lyapunov function V0 : Ω → R31

with32

12



� V̇0(x) = g(x) for all x ∈ Γ and1

� V̇0(x) < 0 for all x ∈ Ω \ R.2

Now we can apply the theory of this paper to compute complete Lya-3

punov function candidates.4

Theorem 3.2 Consider the ODE5

ẋ = f(x) (27)

with f ∈ Ck(Rd,Rd) and k > d/2 + 2, k ∈ N. Let Ω ⊂ Rd be a bounded do-6

main with Lipschitz boundary. Moreover, we choose b ≡ 0 and r ∈ Cσ(Ω,R)7

with r(x) < 0 for all x ∈ Ω, e.g. r ≡ −1.8

Let Γ ̸= ∅ be a compact set with Γ ⊂ Ω \ R, where R is the chain-9

recurrent set.10

Setting σ = k and λi = δxi ◦ L, i = 1, . . . , N , where LV = V̇ =11

∇V (x) · f(x) is the orbital derivative, and using points xni ∈ Ω, which are12

pairwise distinct and no equilibria, i.e. f(xni ) ̸= 0, this problem satisfies the13

assumptions of Theorem 2.5.14

In particular, there is a function V0 ∈ Hσ(Ω) satisfying the constraints15

of (11) and the points xni are regular points of L.16

Proof: The operator L is a differential operator of order m = 1 in the17

sense of Remark 2.2; note that cei = fi ∈ Cσ−1(Ω) with σ = k > d/2 + 2 =18

d/2 +m+ 1. Hence, the singular points of L are precisely the equilibria of19

(27), see [18].20

The existence of a function V0 ∈ Hσ(Ω) satisfying the constraints of (11)21

follows from Theorem 3.1 with any neighborhood U of Γ and g = r
∣∣
U
. Note22

that V0 ∈ Ck(Ω) ⊂ Hσ(Ω) since σ = k and Ω is bounded. □23

In practice we can choose Γ as a very small set, even a one-point set with24

x0 ̸∈ R leads to good results. Since Γ ̸= ∅, the solution of the minimization25

problem is not the trivial solution v ≡ 0; however, there is no guarantee that26

the areas where v̇ = 0 are not considerably larger than the chain-recurrent27

set R. In particular, it is conceivable that connected components of the28

gradient-like set could be areas where v̇ ≡ 0. We will discuss strategies how29

to avoid this in practice below.30

The following proposition provides a fast way to compute an approxi-31

mation of the chain-recurrent set. Assuming that the limit v is not only32

a complete Lyapunov function candidate but a complete Lyapunov func-33

tion, i.e. that Lv(x) = 0 if and only if x is in the chain-recurrent set, and34

also assuming that n is sufficiently large, Proposition 3.3 implies that if35

x = xni ∈ Xn
Ω, then β∗i < 0 if xi is in the chain-recurrent set, and β∗i = 036

otherwise. This is the motivation for a criterion in Section 4 to distinguish37

between points in the chain-recurrent set and the gradient-flow part.38
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Proposition 3.3 Let v be the solution of (11) with r ≡ −1 and b ≡ 0. Let1

x= xni ∈ Xn
Ω ⊂ Ω be a collocation point for all n ∈ N such that Lv(x) < 0;2

in particular, x is in the gradient-flow part.3

Then there exists N ∈ N such that for all discretizations n ≥ N we have

Lvn(x
n
i ) < 0

and (βni )
∗ = 0, where (βn)∗ is the solution of the corresponding problem (7).4

Proof: By (15) we have Lvn(x) → Lv(x) = −ε < 0; hence, there is N ∈ N5

such that Lvn(x) ≤ −ε/2 < 0 for all n ≥ N . By Proposition 2.4 we can6

conclude that (βni )
∗ = 0 for all n ≥ N . □7

Corollary 3.4 Let G ⊂ Ω\R be a subset of the gradient-like flow. Assume8

that the kernel is given by a Radial Basis Function with compact support9

r > 0. Further, let ∅ ̸= G0 ⊂ G be such that infx∈G0,y ̸∈G ∥x − y∥2 ≥ r and10

Γ ∩G = ∅, i.e. points in G satisfy the inequality constraints.11

Then there are necessarily points x ∈ G0 such that v̇(x) = 0.12

Proof: Assume, in contradiction to the statement, that v̇(x) < 0 holds for13

all x ∈ G0. Then Proposition 3.3 implies that (βni )
∗ = 0 holds and, because14

of the form of v and the support radius, this shows that v(x) ≡ 0 for all15

x ∈ G0, which is a contradiction. □16

The corollary thus shows that if the support radius is small, and we17

provide limited information through a small area Γ with equality constraints,18

then the outcome is only a Lyapunov function candidate with large areas19

satisfying v̇(x) = 0 although they are part of the gradient-like flow. The20

lesson to learn is thus to include points in Γ which are not too far apart21

with respect to the support radius r, see Example 3.5.22

The numerical examples in the next section will show, however, that23

when choosing the support radius sufficiently large, the limit v is a valid24

complete Lyapunov function and is able to characterize the chain-recurrent25

set very well, while if the support radius is too small, we miss areas.26

Example 3.5 Consider the system ẋ = 1 for x ∈ [−2, 2]; this system would27

admit a complete Lyapunov function which is strictly decreasing in the entire28

space [−2, 2], e.g. the function v(x) = c−x with any c ∈ R. However, when29

choosing XΓ = {−1, 1} and thus approximating a function with v̇(±1) = −130

and v̇(x) ≤ 0 for all x ∈ [−2, 2] on a grid of points XΩ = αZ ∩ [−2, 2] \31

{±1} with α = 0.01 and the Wendland function ψ3,2 with support radius32

1/c = 1/2 we obtain a function which is only strictly decreasing in a small33

neighborhood around ±1, while being constant with βi < 0 in large parts,34

see Figure 1. In this case, the algorithm converges to a candidate complete35
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Figure 1: We use the algorithm for the system ẋ = 1 with only two points
Γ = {−1, 1} with equality condition v̇(±1) = −1 and support radius 1/c =
1/2 of the Radial Basis function. Top left: v(x), top right v̇(x). The function
v is constant apart from small neighborhoods around ±1. Bottom left: the
values βi at each collocation point, bottom right: the values v̇(xi) at each
collocation point. The coefficients βi are only zero around ±1 and at the
boundary of the interval; in the areas where they are strictly negative, the
function is constant.

Lyapunov function, which is not strictly decreasing in the entire gradient-1

flow part.2

However, if we increase the support radius to 1/c = 1/0.3, then the3

function is decreasing at all points apart from zero and the boundary; note4

that the coefficients βi are mostly zero, see Figure 2. Hence, to converge to5

a complete Lyapunov function, we require a sufficiently large support radius.6

We can use the method in two steps: we fix a set of points X and start7

with an initial distribution of X = XΓ∪XΩ with XΓ∩XΩ = ∅, usually with8

a small number of points in XΓ with equality constraints. In the second step9

we potentially move points from XΩ to XΓ (so changing the set Γ), by using10
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Figure 2: We use the algorithm for the system ẋ = 1 with only two points
Γ = {−1, 1} with equality condition v̇(±1) = −1 and support radius 1/c =
1/0.3 of the Radial Basis function. Top left: v(x), top right v̇(x). The
function v is strictly decreasing apart from 0 and the boundary. Bottom
left: the values βi at each collocation point, bottom right: the values v̇(xi)
at each collocation point. The coefficients βi are mostly zero apart from at
0 and at the boundary of the interval; this is a consequence of the proof of
Proposition 3.3.

the following criterion:1

1. If βi > −10−9 (i.e. close to 0), then the point xi is placed into the set2

XΓ, enforcing the condition v̇(x) = −1.3

2. Otherwise, the point xi remains in XΩ.4

We will see in the examples that the initial step identifies the chain-recurrent5

set and its complement well, and then computes a suitable complete Lya-6

punov function in the second step. The final result does not depend signifi-7

cantly on the initial distribution of X into XΓ and XΩ.8
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4 Examples1

In this section we present case studies of 2- and 3-dimensional systems.2

Given a set Ω ⊂ Rd, we consider the collocation points on a hexagonal3

grid X =
{
α
∑d

k=1 ikwk, ik ∈ Z
}
∩ Ω with fineness parameter α, where in4

dimension d = 2 we have, e.g. w1 = (1, 0) and w2 =
(
1
2 ,

√
3
2

)
. For higher5

dimensions see, e.g., [12, Chapter 6] and references therein. As kernel we use6

K(x, y) = ψl,k(c∥x−y∥2), where ψl,k is a Wendland function, l = ⌊d2⌋+k+1,7

and c > 0 corresponds to the support radius through r = 1/c.8

4.1 Two orbit system9

We consider the system10 (
ẋ
ẏ

)
=

(
−x(x2 + y2 − 1/4)(x2 + y2 − 1)− y
−y(x2 + y2 − 1/4)(x2 + y2 − 1) + x

)
= f(x, y). (28)

It has an asymptotically stable equilibrium at the origin, a periodic orbit11

Ω1 = {(x, y) ∈ R2 | x2 + y2 = 1/4}, which is repelling, and a periodic12

orbit Ω2 = {(x, y) ∈ R2 | x2 + y2 = 1}, which is asymptotically stable.13

We set Ω = [−1.2, 1.2]2 and the fineness parameter α = 0.05. We split the14

set X as described above into XΓ (equality constraints) and XΩ (inequality15

constraints) and use the Wendland function ψ4,2 with parameter c = 1.16

In this example, we consider different sets Γ for the equality constraints.17

In more detail, we define the sets I := [0.15, 0.25] × [−0.05, 0.05], M :=18

[0.65, 0.75] × [−0.05, 0.05], and O := [1.05, 1.15] × [−0.05, 0.05]. The set I19

(inner) is inside the periodic orbit Ω1, the set M (middle) is between the20

periodic orbits Ω1 and Ω2, and the set O (outer) is outside of both the21

periodic orbits.22

Figure 3: The CLF v(x, y) (left) as well as v̇(x, y) (right). We have used
v̇(x) = −1 for x ∈ I and v(x) ≤ 0 for x ∈ X \ I.

17



Figure 4: The CLF v(x, y) (left) as well as v̇(x, y) (right) when using the
conditions v̇(x) = −1 for x ∈M and v̇(x) ≤ 0 for x ∈ X \M .

In Figure 3 we depict the computed CLF candidate together with its1

orbital derivative v̇, when we use the conditions v̇(x) = −1 for the collocation2

points x ∈ I and for all other collocation points x ∈ X \ I we use the3

condition v̇(x) ≤ 0. Figures 4 and 5 show the corresponding results when4

using the conditions v̇(x) = −1 for the collocation points x ∈M and x ∈ O,5

respectively and for all other collocation points v̇(x) ≤ 0. In Figure 6 we6

depict the computed CLF candidate together with its orbital derivative v̇,7

when we use the conditions v̇(x) = −1 for the collocation points x ∈ I∪M∪O8

and for all other collocation points x ∈ X \ (I ∪M ∪O) we use the condition9

v̇(x) ≤ 0.10

Figure 5: The CLF v(x, y) (left) as well as v̇(x, y) (right) when using the
conditions v̇(x) = −1 for x ∈ O and v̇(x) ≤ 0 for x ∈ X \O.

In all four cases, the computed function captures the main features of11

a CLF very well, in particular, the points where the orbital derivative is12

negative as well as the minima and maxima: the equilibrium at the origin13

is a local minimum, the repelling periodic orbit Ω1 at radius 1/2 is a local14

maximum and the stable periodic orbit Ω2 at radius 1 is a local minimum.15

18



Figure 6: The CLF v(x, y) (left) as well as v̇(x, y) (right) when using the
conditions v̇(x) = −1 for x ∈ I∪M∪O and v̇(x) ≤ 0 for x ∈ X \(I∪M∪O).

However, there are differences in the values of v.1

Complete Lyapunov functions provide information about many features2

of the system, including the chain-recurrent set, as well as the stability3

and basins of attraction of its connected components [4, 9, 21, 22, 23, 6].4

However, note that although Theorem 2.5 asserts the convergence of our5

method to a true CLF candidate, when the number of collocation points is6

increased, methods that are designated to compute the chain-recurrent set7

directly might be more efficient for this purpose [11, 24, 5, 19]. One way8

to estimate the chain-recurrent set is to look at where the orbital derivative9

fails to be negative. To study the orbital derivative in more detail, we10

use two approaches. To estimate the chain-recurrent set, in this example11

consisting of the equilibrium at the origin and the periodic orbits Ω1 and12

Ω2, we triangulate the area [−1.2, 1.2]2 into small triangles, more exactly we13

triangulate the area into 2 · 1000 · 1000 = 2 · 106 congruent triangles, and14

then interpolate the computed CLF by a CPA (continuous piecewise affine)15

CLF. For the CPA interpolation we have exact verifiable conditions to assert16

that the orbital derivative is negative, see [16]. As can be seen in Figure17

7, the general shape of the chain recurrent set is approximately obtained.18

However, there is a lot of noise.19

Another way, if we assume that the computed function is close to a CLF,20

is to use the KKT conditions and approximate the chain-recurrent set with21

those collocation points in xi ∈ XΩ, where the condition v̇(xi) ≤ 0 is used,22

and where βi < 0, which implies v̇(xi) = 0 by Proposition 3.3. This is shown23

in Figure 8 and shows a similar result; however, note that this only requires24

to check that βi < 0 and is thus much faster than the previous computation25

using CPA functions on triangulations.26

Numerically, we have used the criterion βi ≤ −10−5 to ensure that βi <27

0. The choice of the parameter 10−5 is not important, as the transition28

from small to large β is very sharp. As an example, we use α = 0.05 and29
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Figure 7: The area where the orbital derivative of the CPA interpolation
of the computed CLF candidate fails to have a negative orbital derivative,
when using the condition v̇(x) = −1 for x ∈ I and v(x) ≤ 0 for x ∈ X \ I
(upper left), v̇(x) = −1 for x ∈ M and v(x) ≤ 0 for x ∈ X \M (upper
right), v̇(x) = −1 for x ∈ O and v(x) ≤ 0 for x ∈ X \ O (lower left), and
v̇(x) = −1 for x ∈ I ∪M ∪O and v(x) ≤ 0 for x ∈ X \ (I ∪M ∪O) (lower
right).

thus have |X| = 1, 232 collocation points. If we order the coefficients |βi| in1

ascending order and plot log10(|β|) for points 320 to 335 we obtain Figure2

9, which shows that any value between 10−1 and 10−7 would give similar3

results.4

Second step5

Now we perform the second step, described in the previous section: after6

the initial computation, we use the same collocation points X, but move7
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