
Figure 8: The area where βi corresponding to the collocation point xi fulfills
βi ≤ −10−5. v̇(x) = −1 for x ∈ I and v(x) ≤ 0 for x ∈ X \ I (upper left),
v̇(x) = −1 for x ∈M and v(x) ≤ 0 for x ∈ X \M (upper right), v̇(x) = −1
for x ∈ O and v(x) ≤ 0 for x ∈ X \ O (lower left), and v̇(x) = −1 for
x ∈ I ∪M ∪O and v(x) ≤ 0 for x ∈ X \ (I ∪M ∪O) (lower right).

points from the inequality constraint v̇(xi) ≤ 0 to the equality constraint1

v̇(xi) = −1 if the value of βi is close to zero, which indicates that v̇(xi) < 02

holds. We have used the criterion βi > −10−9 to ensure βi ≈ 0. However,3

we use the condition βi ≤ −10−5 when plotting the chain-recurrent set to4

ensure βi ̸= 0.5

In Figure 10 we depict the computed CLF candidate together with its6

orbital derivative v̇ in the second step. The outcome is very similar, irre-7

spective of which of the sets Γ we started with. This is very reassuring as8

it shows that the initial guess of Γ does not matter much and distinguishes9

very well between gradient-flow part and chain-recurrent set; by setting the10

orbital derivative to −1 in the numerically found gradient-flow part, the11
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Figure 9: Ordering the coefficients |βi| in decreasing order and plotting
log10(|β|) gives the following result for points 320 to 335; this shows that
there is a sharp decline between points close to zero and negative points.

values of the orbital derivative, and thus of the function itself, are not too1

small. Figure 11 displays the approximation to the chain-recurrent set of2

this second step using the CPA approximation to check where the derivative3

is strictly negative.4

4.2 Three-dimensional example5

In this section, we consider the three-dimensional system from [13, Section6

5.3]7 ẋẏ
ż

 =

x(1− x2 − y2)− y + 0.1yz
y(1− x2 − y2) + x

−z + xy

 = f(x, y, z). (29)

In this example, the origin is an unstable equilibrium and there exists8

an asymptotically stable periodic orbit. On the set Γ := [−0.1, 0.1] ×9

[0.75, 0.85]× [−0.1, 0.1] we set v̇(x) = −1, and we use the hexagonal grid as10

the collocation grid X in Ω = [−1.25, 1.25]2 × [−0.45, 0.45] ∩ (B1.25 \B0.75)11

and c = 1. We use different fineness parameters α to investigate the influ-12

ence of the number of collocation points on the quality of the estimate of13

the chain-recurrent set, namely α = 0.18, α = 0.12, and α = 0.08.14

We estimate the chain-recurrent set again, using two different strategies.15

We first estimate the set where we cannot prove that the orbital derivative16

is negative. To estimate this set we triangulate the area [−1.25, 1.25]2 ×17

[−0.45, 0.45] into small simplices, more exactly we triangulate the area into18

6 · 10002 · 400 = 2.4 · 109 tetrahedra equal in size, and then interpolate the19
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computed CLF by a CPA CLF and check the conditions. We established1

in the first example that the approximation is considerably better in the2

second step and therefore we do not show the results for the first step here.3

For α = 0.18, α = 0.12, and α = 0.08, respectively, we show in Figures4

12, 13, and 14 the area in Ω where v̇(x) < 0 fails by using the CPA in-5

terpolation (top) and the collocation points where βi < 0 (bottom), which6

correspond, using KKT conditions, to the chain-recurrent set, if we assume7

that the function converges to a CLF. The figures show that the approxi-8

mation of the chain-recurrent set improves considerably as we increase the9

density of the collocation points.10

5 Conclusions11

In this paper we have considered a minimization problem with inequality12

and equality constraints for a general linear operator in a reproducing kernel13

Hilbert space. When discretized, the problem can be solved using quadratic14

programming. We have exploited the KKT conditions in this context and15

have shown strong convergence of the solutions of the discretized problems16

to the solution of the original problem.17

We have then applied the general method to compute complete Lyapunov18

function candidates for dynamical systems and have presented examples19

which show that the method is able to identify the chain-recurrent set well.20
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1

Figure 10: The CLF candidate v(x, y) (left) as well as v̇(x, y) (right) in the
second step. From top to bottom we started using the conditions v̇(x) = −1
for x ∈ I, x ∈M , x ∈ O, and x ∈ I ∪M ∪O and v̇(x) ≤ 0 for the rest.
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Figure 11: Second step. The area where the orbital derivative of the CPA
interpolation of the computed CLF fails to have a negative orbital derivative,
when using the condition v̇(x) = −1 for x ∈ I and v(x) ≤ 0 for x ∈ X \ I
(upper left), v̇(x) = −1 for x ∈ M and v(x) ≤ 0 for x ∈ X \M (upper
right), v̇(x) = −1 for x ∈ O and v(x) ≤ 0 for x ∈ X \ O (lower left), and
v̇(x) = −1 for x ∈ I ∪M ∪O and v(x) ≤ 0 for x ∈ X \ (I ∪M ∪O) (lower
right).
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Figure 12: Second step with α = 0.18. Top: The area in Ω where the orbital
derivative of the CPA interpolation of the computed CLF fails to have a
negative orbital derivative. Bottom: The collocation points xi, such that
the corresponding coefficients satisfy βi ≤ −10−5. Both sets indicate the
chain-recurrent set, in this case a periodic orbit. The approximation is poor
due to too only 668 collocation points.
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Figure 13: Second step with α = 0.12. Top: The area in Ω where the orbital
derivative of the CPA interpolation of the computed CLF fails to have a
negative orbital derivative. Bottom: The collocation points xi, such that
the corresponding coefficients satisfy βi ≤ −10−5. Both sets indicate the
chain-recurrent set, in this case a periodic orbit. The approximation uses
2532 collocation points and is much better than with α = 0.18 and 668
collocation points, in particular when using the orbital derivative.
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Figure 14: Second step with α = 0.06. Top: The area in Ω where the
orbital derivative of the CPA interpolation of the computed CLF fails to
have a negative orbital derivative. Bottom: The collocation points xi, such
that the corresponding coefficients satisfy βi ≤ −10−5. Both sets indicate
the chain-recurrent set, in this case a periodic orbit. The approximation
uses 18133 collocation points and is far better than with α = 0.12 and 668
collocation points, both when using the orbital derivative and the βi.
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