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Abstract. We compare di�erent optimisation methods for the compu-
tation of Lyapunov functions for switched linear systems. In particular,
we compare methods based on linear programming to methods based
on semi-de�nite optimisation. For the linear programming methods, we
describe two approaches aimed at reducing the size of the linear pro-
gramme. This is done by using di�erent kinds of coordinate transforms.
One attempts to increase the rotational symmetry of the solution trajec-
tories of the sub-systems. The other one rotates the areas of maximum
curvature of possible Lyapunov functions to where the triangulation is
closer meshed. We investigate the e�ect of these coordinate transforms
on several examples and compare their e�ciency.

Keywords: Switched Systems, Lyapunov Functions, Semide�nite Pro-
gramming, Linear Programming, Preconditioning.

1 Introduction

For the understanding of dynamical systems in science and engineering, one often
uses Ordinary Di�erential Equations (ODEs) for modelling, that is, the temporal
behaviour of the state variables is quanti�ed through a di�erential equation of
the following form,

ẋ = f(x), x ∈ Rn, (1)

where x is the so called state vector and the vector valued function f describes
the dynamics of the system.

Switched systems are used for modelling in many di�erent �elds [25]. They
describe systems, whose dynamics are a�ected by instantaneous changes, by con-
sidering a set of continuous-time sub-systems and a rule governing the switching
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between them. Examples for their use range from the biological sciences [15], for
example, the dynamics of human body thermoregulation during sleep abruptly
changes when sleep transitions from non-rapid eye movement (REM) sleep to
REM sleep [22], to mechanical engineering, where one example is the dynamics of
an engine with shifting gears [40]. Other engineering applications are power elec-
tronics, automotive control, robotics, and air tra�c control [44], to name a few.
Analysing switched systems is also important in the �eld of hybrid systems [25],
where the switching is due to the interaction between the dynamics of individ-
ual continuous-time sub-systems and the discrete-time dynamics of the switch-
ing [18]. The di�erential inclusions associated with uncertainty quanti�cation in
continuous-time systems is another common source of switched systems [5, 13].

A switched linear system has the following form,

ẋ = Amx, m ∈ P, x ∈ Rn. (2)

The switching between the systems ẋ = Amx is modelled through a switching
signal σ : [0,∞) → P. In this paper, we will only consider arbitrary switching
between a �nite number of sub-systems; that is, P is �nite and σ : [0,∞) → P
is arbitrary, except for the (technical) assumption that the number of switching
times is �nite on any �nite time-interval.

Parts of the results in this paper were presented at the International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO) in Rom,
Italy, 2023, and published in the corresponding conference proceedings [3]. It is
organised as follows. In Section 2, we recall results on stability of equilibrium
points, switched systems, linear programming (LP), and semide�nite program-
ming (SDP). In sections 3 and 4, we discuss our LP approach and the canonical
SDP approach, respectively, to compute Lyapunov functions for switched linear
system. In Section 4, we compare the LP and the SDP approaches using numer-
ous examples. In Section 5, we discuss the AngleAnalysis app, used to aid the
LP approach, before we conclude the paper in Section 6.

2 Preliminaries

In this section, we recall some results and de�nitions used in this paper regarding
stability of equilibrium points, switched system, LP, and SDP.

2.1 Stability of an Equilibrium Point

When modelling a dynamical system using (1), the trajectory, or solution curve,
is given by t 7→ ϕ(t, ξ), where ξ is the initial state; that is, ϕ(0, ξ) = ξ. In the
following, we provide the de�nitions of an equilibrium point for system (1) and of
the stability of an equilibrium point. We denote the Euclidian norm of a vector
x ∈ Rn by ∥x∥.

De�nition 1. A point x0 is an equilibrium point for (1) if f(x0) = 0. Without
loss of generality, we assume that the equilibrium point of interest is located at
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the origin; otherwise, we can rewrite (1) in a new set of coordinates given by
z = x− x0.

De�nition 2. The origin is called asymptotically stable for (1) if

(i) for every ε > 0 there exists a δ > 0, such that if ∥ξ∥ < δ then for every t ≥ 0
we have ∥ϕ(t, ξ)∥ < ε and

(ii) there exists a δ > 0, such that if ∥ξ∥ < δ then limt→∞ ∥ϕ(t, ξ)∥ = 0.

The origin is called exponentially stable if there exist constants α > 0 and c ≥ 1
such that

∥ϕ(t, ξ)∥ ≤ c∥ξ∥ exp[−tα] for all t ≥ 0. (3)

2.2 Switched Systems

When modelling switching behaviour by switching between distinct fm(x), m ∈
P where P is some index set, such that

ẋ = fσ(t)(x), σ : [0,∞[ 7→ P, (4)

we call (4) a switched system with switching signal σ and sub-systems fm. On
�rst sight, one might be tempted to derive the stability of the equilibrium for
(4) by considering its stability for each sub-system. However, as Figure 1 shows,
switching can either stabilise two previously unstable systems or destabilise two
stable ones. Consequently, we need to consider the shape of the switching signal
when evaluating the stability of an equilibrium point of (4). There are several
possibilities to adapt the stability concepts from de�nitions 1 and 2 to switched
system (4). However, since we assume that the switching signal is an arbitrary
one, besides having a �nite number of switching events on a �nite time interval,
we do not need to include it in the stability analysis. Under this assumption, a
necessary condition for the asymptotic stability of an equilibrium point for (4)
is that the sub-systems ẋ = fm(x) all have the same equilibrium point and that
it is asymptotically stable for each one of them. That is, for x0 = 0, we demand
fm(0) = 0 for every m ∈ P and that the conditions of De�nition 2 hold for all
ϕ(t, ξ) = ϕσ(t, ξ), where t 7→ ϕσ(t, ξ) is the solution curve of (4) for a particular
admissible switching signal σ.

Note that in science and engineering, one often linearises the system given
by (1) and it becomes

ẋ = Ax, A := Df(0), x ∈ Rn, (5)

where Df(0) ∈ Rn×n denotes the Jacobian-matrix of f at the origin. According
to the Hartman-Grobman theorem [19], the solutions of linearised system (5)
have the same qualitative behaviour close to the origin as system (1), whenever
the real parts of the eigenvalues of Df(0) are nonzero. The solution to the linear
system is given by the matrix exponential exp[At]; that is, a solution starting
at ξ ∈ Rn at time zero will be at exp[At]ξ at time t or ϕ(t, ξ) := exp[At]ξ. The
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Fig. 1: Trajectories of (a) two unstable systems starting at x = [0, 1]T with (b) a
stable switching between those two systems starting x = [0, 10]T and trajectories
of (c) two stable systems starting at x = [0, 1]T with (d) an unstable switching
between those two systems starting x = [−1, 0]T . The �gure is adapted from [2].

matrix valued function t 7→ exp[At] is called the transition matrix of system (5).
Note that asymptotic stability of the origin of linear system (5) is equivalent to
its exponential stability. Moreover, the origin is asymptotically stable if and only
if matrix A is Hurwitz; that is, the real part of all eigenvalues of A is negative.

Now, the transition matrix for (2) with switching signal σ is given by

t 7→ exp[Aσ(tk)(t− tk)] · exp[Aσ(tk−1)(tk − tk−1)]·
· · · exp[Aσ(t1)(t2 − t1)] · exp[Aσ(t0)(t1 − t0)],

where t0, t1, t2, . . . , tk are the switching times and

t > tk > tk−1 > . . . > t1 > t0 = 0.

Moreover, for switched system (2) under arbitrary switching, the origin is expo-
nentially stable if and only if for every switching signal σ with a �nite number of
switching times on every �nite interval, there exist constants α > 0 and c ≥ 1,
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independently of σ, such that inequality (3) holds for

ϕσ(t, ξ) := exp[Aσ(tk)(t− tk)] · exp[Aσ(tk−1)(tk − tk−1)]

· · · exp[Aσ(t1)(t2 − t1)] · exp[Aσ(t0)(t1 − t0)]ξ.

Notably, even for planar systems (n = 2) and switching between only two
di�erent systems (P = {1, 2}), unless matrices Am have some very special struc-
ture, for instance, if they commute [1], determining stability is an open problem.
To understand why, note that exponential stability of the origin is characterised
by matrices A1 and A2 and the origin is exponentially stable if and only if all
pairwise convex combinations of A1, A2, A

−1
1 , and A−1

2 are Hurwitz, a property
which is di�cult to prove [14, 24].

A su�cient condition for exponential stability of the origin of (2) is the
existence of a quadratic common Lyapunov function (QCLF). That is, there
exists an n × n symmetric positive de�nite matrix P , denoted by P ≻ 0, such
that the following linear matrix inequality (LMI) holds [23, 9]:

PAm +AT
mP ≺ 0, ∀m ∈ P. (6)

However, even for n = |P| = 2 the origin of an arbitrarily switched system
can be exponentially stable, while a QCLF does not exist for the system. For
published work on the existence of an common Lyapunov function (CLF), see for
example [30, 31, 17, 27, 28]. For a review on di�erent existing methods to compute
such a CLF, if it exists, see [16]. One method to compute a CLF is to use LP to
parametrise piecewise linear Lyapunov functions [11, 12, 6�8, 45, 37, 38, 33, 34, 46,
4]. Another one is to use SDP to parametrise higher-order polynomial Lyapunov
functions [39, 36]. In the next two subsection we give a concise description of LP
and SDP as needed in this paper.

2.3 Linear Programming

In LP one seeks to solve the following minimisation problem:

minimise cTx (7)

subject to Ax ≤ b and x ≥ 0. (8)

Here A ∈ Rn×m, c ∈ Rm, and b ∈ Rn are given and one wants to �nd a
feasible vector x ∈ Rm � that is, such that Ax ≤ b and x ≥ 0 holds, where
the inequalities are to be understood component-wise � that minimises cTx.
Typically m is much larger than n. Note that there are many other equivalent
formulations of an LP problem. There exist very e�cient methods to solve LP
problems and mature solvers are available. In this work, we use Gurobi [20],
which is a commercial solver but can be used free of charge within academia.
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2.4 Semide�nite Programming

In SDP, we replace the nonnegative orthant constraint of LP by the cone of
positive semide�nite matrices and pose the following minimisation problem [43]:

minimise cTx

subject to F (x) ⪰ 0, where

F (x) = F0 +

n∑
i=1

xiFi. (9)

Here, x ∈ Rn is the free variable. The so-called problem data, which are given
a priori, are vector c ∈ Rn and symmetric matrices Fj ∈ Rm×m, j = 0, 1, . . . , n.
The dual problem associated with the semide�nite program given by (9) is [43]:

maximise −trace(F0Z)

subject to trace(FiZ) = ci, i = 1, 2, . . . , n

Z ⪰ 0. (10)

Here, the free variable is the symmetric matrix Z ∈ Rm×m. Note that solutions
of primal problem (9) provides upper bounds on solutions of the dual and vice
versa. This is called weak duality and holds since

cTx+ trace(F0Z) =

n∑
i=1

cixi + trace(F0Z) =

n∑
i=1

trace(FiZ)xi + trace(F0Z)

= trace

([
n∑

i=1

Fixi + F0

]
Z

)
≥ 0.

The last inequality holds true because of self-duality of the positive semide�nite
cone [35]. If the inequality holds strictly then we speak of strong duality.

Programmes of this type can be solved e�ciently using interior-point meth-
ods. The interested reader is referred to reference [43] and the excellent textbook
by the same authors [10]. Moreover, convexity of the set of symmetric positive
semide�nite matrices in (9) implies that the minimisation problem has a global
minimum, if it is feasible.

3 Lyapunov functions by Linear Programming

In the LP approach, presented in [4], for computing piecewise linear CLF for
the switched linear system (2), a neighbourhood of the origin must �rst be tri-
angulated. Then, an LP is created. Its variables are the values of the piecewise
linear CLF to be parametrised for the system and its constraints secure that
a feasible solution delivers a function that ful�ls the conditions of a CLF. The
number of the constraints of the LP problem is given by the number of sim-
plices in the triangulation multiplied with the dimension of the state space. The
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Table 1: Some examples of the number of simplices in the triangulation TK in
di�erent dimensions n; see formula (11)

n K Number of simplices in TK

2 5 40
2 10 80
2 50 400
2 100 800
3 5 1,200
3 10 4,800
3 50 120,000
3 100 480,000
4 5 48,000
4 10 384,000
4 50 48,000,000
4 100 384,000,000
5 5 2,400,000
5 10 38,400,000
5 50 2.5 · 1010
5 100 3.84 · 1011

vertices of the simplices of the triangulation are �rst put on the integer grid
z ∈ Zn, ∥z∥∞ = K, where K ∈ N determines the resolution, or �neness, of the
triangulation and ∥z∥∞ := maxi=1,2,...,n |zi|. The triangulation with resolution
parameter K is denoted TK . We will later map it to the triangulation T F

K for
computational reasons, but the number of simplices will stay the same.

To count the total number of simplices in the triangulation TK for a given
dimension n, �rst, note that the triangulation subspace has 2n sides. Each side
consists of (2K)n−1 hypercubes of dimension n− 1 and each hypercube leads to
(n − 1)! simplices. To see this, note that the k-dimensional hypercube [0, 1]k is
cut into simplices according to 0 ≤ xp(1) ≤ xp(2) ≤ . . . ≤ xp(k) ≤ 1 for every
permutation p of {1, 2, . . . , k} and that the (n− 1) dimensional hypercubes are
cut accordingly. Thus, the number of simplices as a function of dimension n and
resolution parameter K is given by: 3

Number of simplices = 2n(2K)n−1(n− 1)! = 2nKn−1n! (11)

We can see that this is a case of the curse of dimensionality, as the number
of simplices grows very fast with dimension. For an example of the number of
simplices needed, see Table 1.

In [21], it was shown that the numerical approach from [4] is always able
to compute a CLF if one exists. However, as shown in Table 1, if the LP ap-
proach from [4] is to be applicable in dimensions larger than n = 3 or n = 4
then some reduction in the number of simplices is clearly needed. A promising
preconditioning approach was presented in [4]. It attempts to increase the ro-
tational symmetry of the solutions of the sub-systems (see Figure 2). In more

3 Note that there is an error in [4] where 2n was erroneously replaced by 2n
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(b) Angle is now 20.97◦.

Fig. 2: Exemplary angle between (a) vector �elds x 7→ Ax and x 7→ Bx and (b)
the transformed (or preconditioned) vector �elds x 7→ Ãx and x 7→ B̃x at a
point x0. The �gure is adapted from [3].

detail, the idea is to make a coordinate transform such that V (x) = ∥x∥ is closer
to ful�lling the conditions of a CLF. To compute such a coordinate transform,
we �rst solve the Lyapunov equation for each sub-system ẋ = Amx, that is, we
solve

AT
mPm + PmAm = −In for all m ∈ P,

where In denotes the n × n identity matrix. Since each individual sub-system
ẋ = Amx has an exponentially stable equilibrium at the origin, the matrices Am

are Hurwitz and these equations all have a positive de�nite solution Pm ≻ 0.
Thus, for each sub-system ẋ = Amx, the function Vm(x) = xTPmx is a quadratic
Lyapunov function. We then de�ne the matrix

R :=
∑
m∈P

λmPm

as a convex combination of the Pm, that is, λm ≥ 0 for all m ∈ P and∑
m∈P λm = 1. Note that R is also symmetric and positive de�nite, that is,

R ≻ 0.
Next, we use the coordinate transform x 7→ R

1
2x; that is, we replace the

matrices Am by Ãm := R
1
2AmR− 1

2 . Recall that for R ≻ 0 there is exactly one
symmetric and positive de�nite matrix R

1
2 ≻ 0 such that R = R

1
2R

1
2 . We denote

the inverse of R
1
2 by R− 1

2 and since R− 1
2 is symmetric and for x ̸= 0 we have

xTR− 1
2x = (R

1
2y)TR− 1

2R
1
2y = yTR

1
2y > 0

where y = R− 1
2x ̸= 0, we also have R− 1

2 ≻ 0. We refer to this procedure as
preconditioning switched system (2). Note that if |P| = 1 then V (x) = xT Inx =
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Fig. 3: Lowest resolution factor K that delivers a piecewise linear CLF as a
function of λ for two examples of three-dimensional systems. The number of
simplices needed is 64K2. While 64 ·452 = 129, 600 simplices are needed without
preconditioning, we get a solution with 64 · 252 = 40, 000 simplices for λ ∈
[0.6, 0.9] for P = {6, 9} (upper �gure). For P = {3, 12}, we have an atypical
case, for which preconditioning is counterproductive (lower �gure). The �rst
example possesses a QCLF while the second does not. The �gure is adapted
from [3], where also Am is de�ned for m = 3, 6, 9, 12.

∥x∥2 is a Lyapunov function for the transformed system. Furthermore, a Lya-
punov function for the transformed systems is easily transformed back using the
inverse x 7→ R− 1

2x of the coordinate transform x 7→ R
1
2x. In Figure 2, we show

how trajectories of two systems are altered through preconditioning.
In the majority of cases, one can compute a piecewise linear CLF for switched

system (2) with fewer simplices when using this preconditioning. That is, one
can compute a CLF using a lower value for K in the triangulation TK (or T F

K ).
However, it is unfortunately not transparent how to choose the optimal value
of parameter λm. In Figure 3, we investigate this for two cases from the set of
three-dimensional linear systems de�ned in the appendix of [3]. In both cases,
we consider the two systems ẋ = Arx and ẋ = Asx, the coordinate transform

Rλ = λPr + (1− λ)Ps,

which corresponds to λr = λ and λs = 1 − λ, and report the lowest resolution
parameter K in the triangulation TK , for which we could compute a piecewise
linear CLF for the system. For r = 6 and s = 9, we see the typical case where
preconditioning allows us to compute a CLF using considerably fewer simplices.
However, there are also cases, where preconditioning is not advantageous or even
counterproductive, as it is for r = 3 and s = 12. While usually preconditioning
has the e�ect of reducing the number of simplices needed, choosing an optimal
value for parameter λm is an open problem. Note that this problem is of much
practical value for systems of higher dimensions, where the number of simplices
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is the limiting factor to for computing a CLF. To better understand the e�ect
of preconditioning, we developed the AngleAnalysis app discussed in Section 5.

3.1 Preconditioning with Rotation

As previously discussed, we �rst triangulate the hyper-cube [−K,K]n in the
triangulation TK . For numerical reasons, it is advantageous to map the vertices
of TK using the mapping

F : Rn → Rn, F(0) = 0, and F(x) =
∥x∥∞
∥x∥

x if x ̸= 0.

That is, we map every vertex on the surface of the n-dimensional hyper-cube
[−K,K]n to the surface of the n-dimensional hyper-sphere with radius K.4 We
refer to this new triangulation as T F

K to stress the use of mapping F. In this
paper, we use this triangulation for all computations. Thus, we often do not
make the distinction and rather refer to it as TK . The process of mapping the
vertices is visualised in Figure 4 for n = 2 and in Figure 5 for n = 3. In Figure 4
and Figure 5, we observe that the density of vertices varies in di�erent regions.
As a result, the orientation of the hyper-sphere might be critical with respect
to ease of computing a CLF. Intuitively, in two dimensions, if the semi-major
axis of the ellipse given by a level set of the CLF lies on the line connecting two
opposite corners of the square used for triangulation, shown in the right panel
of Figure 4, then the K necessary for successfully computing the CLF should
be minimal. As a proof of concept we test the e�ect of rotating sub-systems Am

such that the resulting CLF is as just mentioned. This is visualised in Figure 6.
In the following, we explain how we compute the rotation. If matrix P ≻ 0

de�nes the QCLF for an arbitrarily switched system (and obtained, for example,
using the SDP approach), then we consider the eigenvalue decomposition of ma-
trix P given by P = UΛUT , where Λ is diagonal and consists of the eigenvalues
of P in ascending order and U is orthogonal. We then map the �rst column of U
to the line x1+x2+ . . .+xn = 0. Speci�cally, we apply the QR-decomposition to
the vector of ones of length n, set R = UTQ, and replace Am by Ãm = RAmRT .
Note that since both U and Q are orthogonal matrices, so are R and R−1 = RT .
Using this coordinate transform results in the area of largest curvature of the
ellipsoid given by xTPx = c for a constant c > 0, or in other words the cone
around the eigenvector corresponding to the smallest eigenvalue of P , to be
transferred in the direction (1, 1, . . . , 1), where the simplices of the triangulation
are of maximal density.

We tested this concept on the sets of two-dimensional and three-dimensional
systems, for which we computed QCLF in [3]. The results are promising. The
highest resolution factor in the two-dimensional case was K = 5 so there isn't
much room for improvement. However, for only 2% of the cases the rotation
was detrimental, for 88% the rotation was inconsequential, and for 10% the
rotation was bene�cial. In Figure 6, we can see what e�ect this rotation has on

4 Note that there is a typo in [4] where the fraction is reversed.
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Fig. 4: The �gure shows the process of creating a T5 triangulation in two dimen-
sions. The triangulation of [−5, 5]2 is shown in the left panel and the mapping
of the square to a circle is shown in the right panel. The �gure is adapted from
[2].
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Fig. 5: The �gure shows the process of creating a T5 triangulation in three di-
mensions. One face of the triangulation of [−5, 5]3 is shown in the left panel
and the mapping of the cube to a sphere is shown in the right panel, where the
projection of the face has been coloured grey. The �gure is adapted from [2].

the computed CLF when considering an arbitrarily switched system with the
two-dimensional sub-systems ẋ = A14x and ẋ = A17x de�ned in Section 4.

The total number of three dimensional switched systems in [3] with a QCLF
was fairly low, but the results still clearly show the bene�t of using the rotation.
In 18.2% of the cases it was detrimental, in 40.9% it was inconsequential, and in
40.9% the rotation was bene�cial and reduced the number of simplices needed
to compute a piecewise linear CLF. An overview of the results can be found in
Table 2. There is one outlier marked by ∆K = −21 for one combination of three-
dimensional systems, which means that we needed a resolution parameter K for
the rotated system that was 21 larger than when not using the rotation. It can be
explained by the fact that two eigenvalues are much smaller than the third one
and we cannot project both of them to a diagonal, where the simplices are denser.
In such a case, one can get unlucky when rotating, because, although one area
of large curvature is mapped to where simplices are densely distributed, other
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Fig. 6: Trajectories of A14 (black and solid), A17 (black and dashed), level sets
of a CLF (gray and solid) and the triangulation (grey and dashed). Without
rotating the coordinate system a resolution factor K = 5 is needed (left). When
rotating before computing the CLF a resolution factor K = 2 is needed (center).
For comparison the quadratic CLF found with SDP (right) along with the semi-
minor and major axes (gray and dashed).

ones are actually mapped to areas where simplices are not densely distributed.
In the majority of cases, however, the number of simplices is the same or less.

4 Computing Lyapunov Functions using SDP or LP

In this section, we compare di�erent solvers for the established SDP approach to
compute QCLF. Furthermore, we compare our LP approach from [4] to compute
piecewise linear CLFs to the SDP approach. For the comparison, we construct
twenty 2× 2 matrices, which we denote by

Ak+4(j−1) = VjEkV
−1
j , (12)

where j = 1, 2, 3, 4, 5, k = 1, 2, 3, 4,

θ =
[
0 9π

40
9π
20

27π
40

9π
10

]
, d =

[
1 2.1544 4.6416 10

]
,

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

Vj =

[
R (θj)

[
1
1

]
R
(
θj +

π
3

) [1
1

]]
and Ek =

[
−1 −dk
dk −1

]
.

We then consider the switched systems de�ned by (2) with these Am and ∅ ≠
P ⊆ Q = {1, 2, . . . , 20}. Note that the origin is exponentially stable for each
individual system, since the eigenvalues of (12) are given by λ = −1 ± dk

√
−1.

Moreover, they all have the same convergence rate. However, the spiralling rate
is di�erent and depends on k. System trajectories, starting at (1, 1), are shown
in Figure 7.
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Table 2: The e�ect of preconditioning with rotation on the lowest resolution
parameter K needed to compute a CLF for sets of two-dimensional (n = 2) and
three-dimensional (n = 3) systems from [3]. ∆K := Kno R − Kwith R and thus
∆K > 0 means that we needed fewer simplices when we used the rotation and
∆K < 0 means that we needed more simplices when we used the rotation.

∆K
# cases # cases
n = 2 n = 3

−21 ⋆ 1
−4 ⋆ 1
−2 ⋆ 1
−1 28 1
0 1126 9
1 80 4
2 2 3
3 3 ⋆
4 40 ⋆
5 ⋆ 1
14 ⋆ 1

Total: 1279 22

4.1 Numerical Study: SDP

In this section, we compare di�erent solvers and di�erent tolerance parameters
to compute QCLF for the switched system by solving LMI. We start by inves-
tigating the stability of all switched linear systems de�ned by (2) and all the
subsets P ≠ ∅ of an a priori �xed superset Q. In more detail, for each switched
system corresponding to a given subset P ⊆ Q, we use SDP to search for a
QCLF that solves the LMIs given by

P − εIn ⪰ 0, (13)

AT
mP + PAm + εIn ⪯ 0, ∀m ∈ P ⊆ Q. (14)

Here, ε > 0 is a small constant to force positive de�niteness.
To speed up the computations, we use two simple tricks. First, if there is not

a solution for a given subset P ⊂ Q, then there cannot be a solution for any
superset P ∗, Q ⊇ P∗ ⊇ P. Second, a solution to the LMI given by (13)-(14)
cannot exist for a particular subset P if there is a matrix in the cone de�ned by
the matrices Am, m ∈ P, that is not Hurwitz, or more speci�cally, if for some
choice of λm matrix Ã :=

∑
m∈P λmAm is not Hurwitz. The reason for this is

that

ÃTP + PÃ ≺ 0 (15)

has a solution P ≻ 0 if and only if Ã is Hurwitz and

ÃTP + PÃ =
∑
m∈P

λm

(
AT

mP + PAm

)
. (16)
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Fig. 7: Trajectories of the systems ẋ = Amx, m = 1, 2, . . . , 20, starting at (1, 1).
The matrices Am are de�ned in (12). The �gure is adapted from [3].

Thus, if Ã is not Hurwitz then we know that there cannot exist a solution to
(13)-(14), because otherwise the left-hand-side of (16) is negative de�nite with
the P ≻ 0 from the solution, which is contradictory to (15) not having a solution
P ≻ 0. Hence, as a computationally very cheap test to eliminate unnecessary
computations, for a subset P, we �rst verify whether

∑
m∈P Am is Hurwitz or

not. If it is not Hurwitz then we do not need to attempt to solve (13)-(14) for
this particular P.

For our computations, we use the MATLAB [29] toolbox YALMIP [26] to
search for a solution for all possible P ⊆ {1, 2, . . . , 20} using the solvers Se-
DuMi [41], MOSEK [32], and SDPT3 [42]. For all solvers, we use their default
parameters and tolerances. To identify false positives, we additionally verify that
a solution reported by a solver truly satis�es (6). This is necessary because solvers
sometimes report solutions to problems that do not really ful�ll the constraints,
particularly, if the problems are numerically badly conditioned.

For some subsets P ⊆ Q, the origin is an exponentially stable equilibrium
of the corresponding switched system, for instance, if we choose only singlets.
However, there are subsets P, for which the origin is not exponentially stable.
Furthermore, in some cases there are subsets P, for which the origin is exponen-
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Table 3: Overview of the results in two dimensions. PT: Solution reported and
passed test, FP: False positive (solution reported but did not pass test), I: Infea-
sible, and T: Total number of LMIs problems. The tolerance parameter ε = 10−3

appears reasonable and ε = 10−16 does not. Note the e�ect of the simpli�cation
of not considering supersets of a set P, for which the LMI problem is infeasible.
With ε = 10−3 only 1,366 LMIs have to be solved instead of 220−1 = 1, 047, 296,
i.e. for every subsets P ≠ ∅ of Q.

Solver ε PT FP I T

MOSEK
10−3

1279 0 87 1366
SDPT3 1279 0 87 1366
SeDuMi 1279 0 87 1366

MOSEK
10−16

1279 1,047,296 0 1,048,575
SDPT3 1279 1,047,296 0 1,048,575
SeDuMi 1279 0 87 1366

tially stable, but there does not exist a QCLF for the corresponding switched
linear system. We summarise the results of our computations in Table 3.

If we choose a sensible tolerance parameter, such as ε = 10−3, then we
obtain the same results independently of the solver used. If we choose a very low
tolerance parameter such as ε = 10−16, which is numerically close to zero, then
we obtain, possibly as one would expect, more solutions. For two-dimensional
systems, the results are not really useful, since the solvers MOSEK and SDPT3
report all LMIs as feasible, while solver SeDuMi delivers exactly the same results
as when we use ε = 10−3. Surprisingly however, P ̸= 0, as one might expect for
such a low tolerance. Importantly, for very badly conditioned �ve-dimensional
systems, we showed in [3] that one obtains many more true solutions by using the
very low tolerance parameter ε = 10−16 and then verifying the solutions, than
by using a more reasonable tolerance parameter ε = 10−3. Thus, we propose to
�rst use a tolerance that seems unreasonably low, like ε = 10−16, and then verify
the solutions obtained, since checking for false positives is computationally very
cheap and we manage to obtain solutions that are missed with a more sensible
tolerance parameter ε.

4.2 Numerical Study: LP vs. SDP

As we have discussed earlier in this paper, even if the origin of the switched
system given by (2) is exponentially stable, a QCLF does not necessarily exist.
However, the origin is an exponentially stable equilibrium for the switched sys-
tem (2) if and only if there exists a piecewise linear CLF [17, 27, 28]. Moreover,
a piecewise linear CLF can always be computed with our LP method from [4] as
shown in [21]. Thus, we expect that by using the LP approach, we will be able
to prove exponential stability of (2) for more subsets P ⊆ Q = {1, 2, . . . , 20}
than by solving an LMI.

For our investigation, we compare the results from the last section, where we
searched for a QCLF by means of SDP for two-dimensional systems, with the LP
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Table 4: Ratio, in percentage, of the two-dimensional switched systems (1) suc-
cessfully solved using SDP to problems successfully solved using our LP method,
for matrices (12). Note that # refers to number of systems.

Q # solved # solved
SDP/LP LP/tot. total #

(SDP) (LP)

1 20 20 100% 100% 20
2 104 142 73.24% 74.74% 190
3 260 522 49.81% 45.79% 1, 140
4 370 1092 33.88% 22.54% 4, 845
5 316 1458 21.67% 9.404% 15, 504
6 160 1261 12.69% 3.253% 38, 760
7 44 696 6.322% 0.8978% 77, 520
8 5 233 2.146% 0.1850% 125, 970
9 0 42 0% 0.02501% 167, 960
10 0 3 0% 0.001624% 184, 756
11 0 0 ⋆ 0% 167, 960

Table 5: Ratio, in percentage, of the three-dimensional switched linear systems
from [3] successfully solved using SDP to problems successfully solved using our
LP method, where # refers to number of systems.

Q # solved # solved
SDP/LP LP/tot. total #

(SDP) (LP)

1 12 12 100% 100% 12
2 9 10 90% 15.15% 66
3 1 3 33.33% 1.36% 220
4 0 0 ⋆ 0 495

approach from [4], where we search for a piecewise linear CLF using the Gurobi
solver [20]. As shown in Table 4, the LP approach increasingly outperforms
the SDP approach for larger |P|. For instance, for |P| = 2, the SDP approach
guarantees exponential stability for only 75% of the systems, for which the LP
approach guarantees it. For |P| = 3, the percentage decreases to 50%, for |P| = 4,
to 33%, etc. For completeness, we also include Table 5 from [3], which shows
similar results for three-dimensional systems. The results are comparable to the
two-dimensional case.

5 The AngleAnalysis App

As we discussed thoroughly in Section 3, it is by no means easy to determine
a good matrix R for preconditioning the switched linear system (1) for the
computation of a piecewise linear CLF using LP. To o�er some visual guidance
for the preconditioning and in order to understand the challenge better, we
developed the MATLAB application AngleAnalysis. It visualises the di�erent
local angles between two linear vector �elds over the state space. That is, for the
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Fig. 8: Angle visualisation for matrices from [4] with a = 0.1 and b = 13.25
without preconditioning (left) and with λa = 0.2 and λb = 0.8 (right). A piece-
wise linear CLF was obtained for the preconditioned system using a much fewer
simplices than without (lower K). The �gure is adapted from [3].

systems ẋ = Ax and ẋ = Bx, we visualise the angle

∠(Ax, Bx) := arccos

(
⟨Ax, Bx⟩
∥Ax∥ ∥Bx∥

)
(17)

as a function of x, where A,B ∈ Rn×n, n = 2, 3 (see Figure 2 (a)). Note that
⟨x,y⟩ denotes the Euclidian scalar product of the vectors x,y ∈ Rn. In the
following, we explain how the angle in (17) relates to the stability of the origin.

First, note that function V : Rn → [0,∞) is a Lyapunov function for the
switched linear system (2) if and only if V (0) = 0, V (x) > 0 for x ̸= 0, and
the directional derivative along any system trajectory is strictly negative, that
is, ⟨∇V (x), Amx⟩ < 0 for all m ∈ P and x ̸= 0. It follows that for asymptotic
stability of the switched system ẋ = Amx, P = {1, 2}, A1 = A and A2 := B,
the conditions ⟨∇V (x), Ax⟩ < 0 and ⟨∇V (x), Bx⟩ < 0 for all x ̸= 0 must hold.
This implies that ∠(∇V (x), Ax) > 90◦ and ∠(∇V (x), Bx) > 90◦ must hold
for all x ̸= 0. Then, intuitively, this condition is more di�cult to satisfy if (17)
tends to be large or, conversely, the smaller (17) the more �space� there is for the
gradient ∇V (x). Hence, it should be easier to �nd a function V : Rn → [0,∞),
whose gradient ful�ls ∠(∇V (x), Ax) > 90◦ and ∠(∇V (x), Bx) > 90◦ for all
x ̸= 0 if (17) is small for all x ̸= 0. However, note that this is only a local
condition and even though the angle (17) is small, but not zero, for all x ̸= 0,
this does not necessarily mean that the equilibrium is asymptotically stable for
the switched system.

Given matrix A ∈ Rn×n and matrix B ∈ Rn×n, the AngleAnalysis app
visualises the angle given by (17) as a function of x through a heat-map, where
small angles are represented by dark colours and large angles by bright colours.
For n = 2, the heat-map is plotted in the square [−1, 1]2. For n = 3, the heat-
map is plotted in the square [−1, 1]2 × {x3}, where the value of parameter x3 is
chosen by the user from the interval [−1, 1].

To provide further insight, next, we look at two extreme cases. For instance,
if there exists a x̂ ∈ Rn, for which (17) is 180◦, then there exists a constant c > 0
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Fig. 9: Angle visualisation for A3 and A12 at x3 = 0. Without preconditioning
(left), with λ6 = 0.7 and λ9 = 0.3 (center) and with λ6 = 0 and λ9 = 1 (right).
Corresponding angle data can be found in Table 6. The �gure is adapted from
[3].

Fig. 10: Angle visualisation for A3 and A12 at x3 = 0. Without preconditioning
(left), with λ3 = 0.7 and λ12 = 0.3 (center), and with λ3 = 1 and λ12 = 0 (right).
Corresponding angle data can be found in Table 7. This �gure is adapted from
[3].

such that Ax̂ = −cBx̂ and a Lyapunov function V , such that

⟨∇V (x), Ax⟩ < 0 and ⟨∇V (x), Bx⟩ < 0 (18)

holds for all x ̸= 0, cannot exists. To see this, assume for the sake of the argument
that (18) holds. Then this leads to the following contradiction:

0 > ⟨∇V (x), Ax⟩ = ⟨∇V (x),−cBx⟩ = −c ⟨∇V (x), Bx⟩ > 0

for x = x̂. Hence, if there exists a x̂ ∈ Rn, for which (17) is 180◦, then a CLF for
systems ẋ = Ax and ẋ = Bx does not exist. Another extreme case is given by
(17) being 0◦ for all x ∈ Rn. Then, a Lyapunov function guarantees exponential
stability of ẋ = Ax if and only if it guarantees exponential stability of ẋ = Bx.
In fact, A = cB for some c > 0.

For some systems, the app clearly indicates that we can expect a reduction
in the number of simplices after preconditioning, see Figure 8 and the reference
[4]. In other cases the bene�ts of preconditioning do not become clear. For the
3× 3 matrices Am from the appendix of [3] we show in Figure 9 and Figure 10
the values of (17) by means of a heat-map with preconditioning and without
preconditioning. Table 6 and Table 7 show the corresponding angle statistics.



Numerical computations of Lyapunov functions for switched linear systems 19

Table 6: Maximum, minimum, mean, and standard deviation of (17) for matrix
A6 and matrix A9 at (x1, x2, x3) ∈ [−1, 1]3 where x1, x2, and x3 are 30 evenly
spaced points.

λ6 λ9 Max Min Mean Std K

N/A N/A 176.0 2.97 77.5 43.0 45
0.7 0.3 176.5 1.02 105.3 30.4 25
0 1 176.8 0.83 82.5 37.7 60

Table 7: Maximum, minimum, mean, and standard deviation of (17) for matrix
A3 and matrix A12 at (x1, x2, x3) ∈ [−1, 1]3 where x1, x2, and x3 are 30 evenly
spaced points.

λ3 λ12 Max Min Mean Std K

N/A N/A 143.0 1.04 74.2 25.2 60
0.7 0.3 136.3 1.14 70.0 20.0 70
1 0 151.9 1.38 64.2 23.0 110

In both case, the app does not seem to provide support for deciding about
the parameters in the preconditioning. The reason is that, although it is not
di�cult to precondition the system such that locally the gradients ∇V (x) ful�l
∠(∇V (x), Ax) > 90◦ and ∠(∇V (x), Bx) > 90◦, V : Rn → [0,∞) is a continuous
function on Rn and the problem of the existence of a CLF is highly non-local.
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6 Conclusions

We discussed methods to compute Lyapunov functions for switched linear sys-
tems using semide�nite programming (SDP) and linear programming (LP).
We compared the SDP solvers SeDuMi, MOSEK, and SDPT3 for computing
quadratic common Lyapunov functions (QCLFs) for a variety of sets of linear
systems. Such common Lyapunov functions (CLFs) are also Lyapunov functions
for the corresponding switched linear systems. Furthermore, we tried di�erent
tolerance parameters ε > 0 to force positive de�niteness of matrix A through
A ⪰ εIn and obtained the surprising result that using very small ε enhanced the
performance of the approach in some examples. Hence, it is advisable to use a
very low ε > 0, such as ε = 10−16, and then verify solutions afterwards.

We compared computing QCLF with SDP to computing piecewise linear CLF
using the LP approach from [4]. As expected, since switched linear systems with
an asymptotically stable equilibrium at the origin do not necessarily possess a
QCLF, the LP approach is able to assert stability for more switched systems
than the SDP approach. In fact, it was proved in a recent publication [21] that
our LP approach always succeeds in computing a CLF, if enough simplices are
used in the triangulation, that is, if resolution parameter K is large enough. A
drawback of the LP approach is that a triangulation of the state space is needed,
which can result in a very high number of simplices in higher dimensions. We
described di�erent preconditioning methods for our LP method, including a new
method based on rotations that has not been studied before, to better deal with
this problem. Unfortunately, it is not clear how to choose the optimal parame-
ters for the preconditioning methods. Finally, we developed the MATLAB app
AngleAnalysis to get visual information about the e�ect of the preconditioning
and gave examples of its use. In some cases, it gives a clear indication of which
parameters are good, but in other cases this is not as clear.

In summary, we presented state-of-the art approaches to determine the asymp-
totic stability of the origin for switched linear systems. The traditional SDP ap-
proach is faster, but it is often not able to assert the asymptotic stability of the
origin. Our LP approach is computationally more demanding, but is able to as-
sert asymptotic stability of the origin for many more switched linear systems. In
theory, it can always assert the asymptotic stability of an asymptotically stable
equilibrium given su�cient computational power. For future research, it seems
promising to extend the SDP approach to higher-order polynomial Lyapunov
functions, as this approach is less conservative. Furthermore, as shown in this
paper, preconditioning can greatly accelerate the LP approach. We will further
investigate how to choose optimal parameters for the preconditioning.
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