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Abstract: We present a new method to compute the minimum average dwell-time needed to
assert the global exponential stability of the equilibrium at the origin for a switched linear
system. The method attempts to compute compatible Lyapunov functions for the individual
subsystems of the switched system using linear programming or linear matrix inequalities
optimization problems. We test the method on four examples to demonstrate its applicability.
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1. INTRODUCTION

We consider the n-dimensional switched linear system
o:[0,00) = P:={1,2,...,P}, (1)

where A; € R™*™ and the origin is globally exponentially
stable (GES) for all the individual subsystems x =
A;x, i € P, and where the switching signal o is right-
continuous and only has a finite number of discontinuity-
points on every finite time-interval. We are interested
in the stability of the equilibrium at the origin for the
switched system. Note that even though the origin is GES
for all the individual subsystems, it might not be stable
for the arbitrary switched system (1), see e.g. Remark
2.3 in Liberzon (2003) for a counterexample. However, by
limiting the allowed rate of switching sufficiently, the origin
will always be GES for the switched system (1).

x = Aa(t)xa

An appropriate concept to discuss the allowed rate of
switching is the so-called average dwell-time, see Hespanha
and Morse (1999) or, e.g., Chapter 3.2 in Liberzon (2003).
We say that a switching signal o has an average dwell-time
7 > 0, if there exists Ny > 0, such that

t_
N, (t,s) < No+ —2> forallt>s>0,
T

where N, (t, s) denotes the number of discontinuity-points
of o on the open interval (s,t), i.e. N,(¢,s) is the number
of times that o switches value between times s and ¢. The
set of all switching signals with average dwell-time 7 is
denoted by 3, and we talk about the switched system (1)
with average dwell-time 7, if o in (1) can be an arbitrary
element from Y,. When we say that the origin is GES for
(1) with average dwell-time 7, we mean that there exist
constants C' > 1 and S > 0, such that

Ix(®)] < Ce P [|x(0)]

for all solutions x(-) to (1) with o € X.; || - || denotes the
Euclidian norm.
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An interesting question is now:

What is the minimum average dwell-time T,
such that the origin is GES for the switched
system (1)7

A sufficient condition is given in terms of Lyapunov
functions for the subsystems in the following theorem
adapted from Theorem 3.2 in Liberzon (2003); recall that
Ko is the set of strictly increasing, unbounded, continuous
functions [0, 00) — [0, 00), that are zero at zero.

Theorem 1. Assume that for each i € P, there exists a

locally Lipschitz continuous function V;: R® — R, such
that

a ([x[)) < Vi(x) <a*([x[), vieP, (2a)
DYVi(x, Aix) < —aV;(x), VieP, (2b)
Vi) < pVilx), VijeP, (20

where @*,a* € Ko, a > 0, and g > 1. Then the origin is
GES for the switched system (1) with average dwell-time
T, if T satisfies
In(p1)
> . 3
g 3)

Here,
DV;(x,Aix) := DT (V; 0 X)(t)|t:o
Vi(x(t + h)) — Vi(x(t))

:= lim sup
h—0+ h t=0
= lim sup Vilx + hAix) - Vi(x)
h—0+ h

is the Dini-derivative of V; along the solution trajectories
of the system x = A;x. The proof can be copied
almost verbatim from the proof of Theorem 3.2 in
Liberzon (2003), although our V; are only locally Lipschitz
continuous and we use the Dini-derivative instead of the
usual derivative, because with W(t) := e V) (x(t)) we
have for two consecutive discontinuity times ¢; and ¢; ;1 of
o for every t; <t < t;41, that



W(t) =W(t;)+ tD+W(T) dr

tj
t
:W@H/Twmmm@m)
tj
+ e D+Vg(t].)(x(7'), Agiyx(7)) | dT
< W(t;) by (2b),
see e.g. Theorem 1 in Hagood and Thomson (2006).

The following corollary to Theorem 1 was used in Hafstein
and Tanwani (2023) to develop a method to compute a
lower bound on the minimum average dwell-time 7 for the
switched system (1), such that the origin is GES.

Corollary 2. Assume that for each ¢ € P, there exists a
locally Lipschitz continuous functions V;: R™ — R, such
that

allx|? < Vix) <alx||”, VieP,
D*Vi(x, Ax) < —alx||’, VieP, (4)
Vi(x) < uVj(x), Vi,jeP,
a,a,a,d > 0, and p > 1. Then the origin is GES for the
switched system (1) with average dwell-time 7 for every
al
5 alnlw) (5)
«

Note that in the corollary the K., functions a* and @*,
have been replaced with the K, functions x — al|x| and
x > al||x]|| for constants 0 < @ < @. The corollary follows
immediately from —||x|| < —V;(x)/a.

It is shown in Hafstein and Tanwani (2023), that with
d=1and d = 2, one can fix g,a > 0, and ¢ > 1, and
then use optimization to maximize o > 0, such that the
conditions of Corollary 2 are fulfilled. From formula (5) one
then obtains a lower bound on the minimum average dwell-
time needed to assert GES of the origin for the switched
system (1).

For d = 2 this was done by searching for quadratic
Lyapunov functions V;(x) = xTPix, i € P, by solving
the linear matrix inequality (LMI) opimazation problem:
maximize o
subject to

QI =< Pz and Pz =< EI, Vi € P, (62%)
ATP, + PA; < —al, YieP,
P, < uPj, Vi,j€P. (6b)

In these formulas I denotes the n x n identity matrix
and A < B means that the matrix B — A € R"*" is
symmetric and positive semidefinite. The variables of the
LMI optimization problem are o > 0 and the symmetric
matrices P; € R"*" 4 € P.

For d = 1, and this was the main contribution of
Hafstein and Tanwani (2023), linear programming (LP)
was used to parameterize piecewise linear Lyapunov
functions V; fulfilling the conditions of Corollary 2. In the
three examples presented, the LP approach with d = 1
outperformed the LMI approach with d = 2, which is not
surprising because the set of piecewise linear Lyapunov
functions is richer than the set of quadratic Lyapunov
functions.

The advantage of using the conditions of Corollary 2 on
the Lyapunov functions V;, rather than the conditions in
Theorem 1, is that the former is linear in the optimization
variables while the latter is bilinear. Hence, o can be
maximized using efficient and well-understood methods;
LP in the case of d = 1 and semidefinite programming
(SDP) in the case d = 2.

However, there is some conservatism involved in the
conditions (4) in Corollary 2 with respect to the conditions
(2b) in Theorem 1. Further, even after the maximum « has
been found using a fixed pu > 1, the corresponding lower
bound 7 in formula (3), on the needed average dwell-time
to assert GES, might be suboptimal. Hence, in this paper
we will derive and study methods to find low values for
the average dwell-time 7 using the parameters a and u
directly. We will use LP and LMI optimization problems,
strongly based on those in Hafstein and Tanwani (2023),
to construct Lyapunov functions, but in addition we will
investigate methods to improve the values of o and p in
order to obtain lower 7.

The paper is organized as follows. In Section 2 we discuss
how to parameterize compatible Lyapunov functions for
the individual subsystems of the switched system (1) using
LP or LMI optimization problems. In Section 3 we describe
our method to compute a minimum average dwell-time
T that asserts the origin is GES for the system (1) and
in Section 4 we apply our method to four examples and
discuss the results, before we conclude the paper in Section
5.

2. PARAMETERIZING LYAPUNOV FUNCTIONS

The LMI optimization problem we use to construct
quadratic Lyapunov functions is a straightforward adap-
tation of the LMI optimization problem from Hafstein and
Tanwani (2023) discussed in the last section. For fixed
0<a<a a>0,and p > 1, find symmetric matrices
P, e R 4 € P, fulfilling

LMI feasibility problem:

al <P, and P, <al, VieP, (7a)
AP+ PA; +aP; <0, VicP, (7b)

If a solution exists to the LMI optimization problem (7),
then the functions V;(x) = xT Pix, i € P, are Lyapunov
functions to the subsystems x = A;x fulfilling V;(x) <
pV;(x) for all 4,5 € P. Hence, by Theorem 1, 7 = In(u)/a
is a lower bound on the needed average dwell-time to assert
GES of the origin for the switched system (1).

The LP problem to construct piecewise linear Lyapunov
functions V; for the switched system (1) is more involved,
mainly because one needs to triangulate the state-space
R™. As we are essentially using the construction from
Hafstein and Tanwani (2023), we only give a short
description and refer the reader to Hafstein and Tanwani
(2023) for the details. We use the triangulation 7, where
K € N is a parameter determining the density or fineness
of the triangulation, which consists of the n-simplices
S, = cof{0,x7,x},...,x}. Here v is just an index to
enumerate the simplices &, € TF and coA denotes the
convex hull of the vectors in A C R™ Two different



simplices 6,8, € TE intersect in a common face, which
might be as small as {0}, and the set-theoretic union of the
simplices is a neighbourhood of the origin. As discussed in
Andersen et al. (2024) the triangulation T has 2" K"~ 1n!
simplices.

To every simplex &, = co{0,x},x5,...,X},} we associate
the variables V}, € R, 7 € P and j =1,2,...,n; note that

J

if y = x} = xj for two different simplices &, and &,
then V}f = Vi = V:Z“' Once the values of the variables

J k
have been fixed, we can define the functions V; on

L v oV v
¢, := cone{x},x5,...,x/'}

= Z)\jx?: Aj >0 for j=1,2,...,n
j=1

through V;(x}) := V;Ze for j =1,2,...,n, and

Vi [ o] =D AV = DAV (8)
Jj=1 j=1 j=1

Since &, is an n-simplex the vertices x%, j = 1,2,...,n,
are linearly independent and V; is a well-defined linear
function on €,. Further, since two different simplices &,
and &, intersect in a common face, V; is well-defined and
continuous on the set-theoretic union of the €,, which
is the whole of R", because the union of the &, is a
neighbourhood of the origin. Another useful equivalent
formula for V; on €, is

Vi(x) = [V 1T X, %,
where

Vi = [V Viy - V] e R (9)

v
and
X, = [x]{ x5 .-+ x}] € R™*™,

i.e. the X]”- are the columns of X,,; see e.g. Andersen et al.

(2023) or Remark 9 in Giesl and Hafstein (2014) for this
formula.

Given the triangulation T,£, the LP feasibility problem to
construct Lyapunov functions V; for the switched system
(1) is: for every simplex &, = co{0,x¥,x},...,x"} we
have the constraints for every i,k € P and every j =
1,2,....n:

LP feasibility problem:

al[xfll < Vi <@yl (10a)

V)T X A < —alv )T X

]7
in", SMV;:CV»
J J

(10c¢)

Theorem 3. Any solution to the LP feasibility problem
(10) delivers Lyapunov functions V;: R" — R, i € P,
through the formulas (8), that fulfill (2) with appropriate
a*, @ € Kuo.

Proof: Follows immediately from formulas (8) and (9) and
the fact that for every x € R™ and i € P, there exists a
¢,, such that x + hA;x € €, for all small enough 0 < h;
hence by (10b) and with x = 377, A;x%, A; > 0, we have

b-pmmmmmm === = o m - - - - = - o
\

.\‘4

(

Fig. 1. An example of the area D where (2) has a feasible
solution given o and p. Note that the area extends
indefinitely as p© — oo. The function o — pu(a) is
discussed at the beginning of Section 4. All of our
computations indicate that u(«) is convex, although
we have not been able to prove this statement.

DY Vi(x, Aix) = v ] T X1 Aix

= NVITX T AXY
j=1

[
|
o3yl
=<
®
S
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O

3. MINIMIZING THE MINIMUM AVERAGE
DWELL-TIME

For the switched system (1) define

D = {(a, ) € (0,00) x [1,00): (2) is feasible}, (11)
see Figure 1 for a schematic picture. By Theorem 1
the switched system (1) is GES with average dwell-time
7 > In(p)/« for every (a, ) € D. To obtain the optimal
minimum average dwell-time that asserts GES for the
system (1), we attempt to

1
minimize 7 :=7(,p) = In() on D.
a

We will approximate the set D using two classes for
the Lyapunov functions V;. In more detail, we use the
LP problem (10) to compute piecewise linear Lyapunov
functions and the LMI optimization problem (7) to
compute quadratic Lyapunov functions. Hence, checking
whether a point (o, p) is in D or not involves solving a
feasibility problem. Now one can of course proceed with a
brute force approach and check for numerous points on a
dense grid if (a, u) € D, but since this is quite expensive
numerically, we will suggest a more clever way to search
systematically for (o, 1) that deliver low values for 7. Note
that since 7 is nonlinear and a function of two variables, it
is not trivial figuring out which parameter or parameters to
focus on in its minimization. Methods like gradient descent



are a poor option for optimizing both o and u at the same
time, because the update

Q41| _ ||
|:1u’k+1:| - |:/'Lk:| UVT(akhuk))

with the learning rate n > 0, does not consider the set D
and 7 obtains its minimum 7 = 0 for every (a, 1), a € R.

Before we suggest our method to minimize 7 in Algorithm
1, we first make the following useful observation:

3.1 Upper bound on «

Recall that a linear system x = Ax is GES, if and only
if A is Hurwitz. We can use this to our advantage and
compute upper bounds on potential «, such that the LMI
optimization problem (7) or the LP problem (10) are
feasible.

LMI: The Lyapunov inequality A7 P, + P;A; < 0 has a
symmetric positive definite solution P; > 0, if and only if
A; is Hurwitz, see Sylvester (1884). The inequality (7b)
implies

= ATP,+ PA + 5P+ 5P,

— (4 + %I)TR- + P (A +51)

That is, for (7b) to be feasible, the real parts of the
eigenvalues of A; + §I must be strictly negative for all
i € P. This gives us an upper bound apyi on « for the
LMI optimization problem (7).

LP: Similarly, consider that (10b) implies
0> [vi]TX;lAix;f + a[vi]TXglx;
=V )TX A+ al)x].
That is, for (10b) to be feasible, the real parts of the
eigenvalues of A; + ol must be strictly negative for all

i € P. This gives us an upper bound arp on « for the LP
problem (10).

8.2 Our method to minimize the average dwell-time

We suggest the following algorithm to search for points
(o, u) € D that minimize 7. Recall, that we either use the
LP problem (10) to search for piecewise linear Lyapunov
functions V; or the LMI optimization problem (7) to search
for quadratic Lyapunov functions V;. Thus, we first fix the
method to search for feasibility as either the LP problem
(10) or the LMI optimization problem (7). The method
is referred to as the feasibility problem with values (a, u).
If we are using the LP problem (10) we define @ := arp
and if we are using the LMI optimization problem (7) we
define @ := ar. Before the algorithm is executed, it is
worthwhile to first check the feasibility for (o, ) = (0, 1).
If it is feasible then one usually also gets a solution for a
small a > 0 and p = 1, which shows GES for the switched
system (1) for arbitrary switchings. That is, no minimum
average-dwell time is needed for stability.
Algorithm 1. We fix N M € N, N > 2, and a,b > 0 and
distribute the values a = v < Tnv_1 < ... < T <711 =0b
and 0 < a1 < ... < ap; < @ uniformly, i.e.

i
M+1

—1
Tj:(afb)hﬁ’b and Oél:a

1.8¢

16¢

2144

1.2¢

Fig. 2. Level sets for 7 = In(u)/a on [0.2,1] x [1,2]. Note
the p-axis is logarithmical, therefore each level set is
linear in the figure.

forj=1,2,...,Nandt=1,2,..., M.
Set i =1 and j = 1. Then execute:

(1) Solve the feasibility problem with o = «; and p =

exp(7;0y).

(2) e If there is a feasible solution to the problem, then
increase j by one, i.e. j < j + 1, and go back to
step (1). That is, we decrease 7 from 7; to 7j41
and check if this problem, with a lower average
dwell-time and a smaller p = exp(7j410;), also
has a feasible solution.

e If there does not exists a feasible solution to the
problem, then increase ¢ by one, i.e. i < i+1, and
go back to step (1). That is, we increase « from
a; to a1 and set g = exp(7jc4+1) and check if
this problem, with the same average dwell-time
T = 75, but with larger parameters o and p, has
a feasible solution.

Note that the algorithm follows the level sets of T,
see Figure 2 for an exemplary picture, as long as the
optimization problem is not feasible. If the optimization
problem is feasible we jump to the next level-set below for
the same a and try our luck.

4. EXAMPLES

To visually interpret the examples the following nomencla-
ture is useful: We say that the set D in (11) is approzimated
by the function o — p(«) if graph(p) C D. Note that if
(o, u*) € D, then (a,pu) € D for all > p*. Hence, the
epigraph {(a, p) € (0,00) x [1,00): u > u(a)} is a subset
of D. In the following we explicitly write the argument «
in p(a) to emphasize that p is a function of «.

For each example we computed u(a) using both the LP
problem (10) and the LMI optimization problem (7) with
a brute forced approach; checking the feasibility of the
optimization problem on a dense grid in the (a, 1) plane.
Starting with (o, ) = (0,1), where the optimization
problem is not feasible, we show how Algorithm 1 first
approaches p(a) and then walks along it until a minimum
is found. The LP problem was implemented with C++
and solved with Gurobi (Gurobi Optimization, LLC
(2024)). The LMI optimization problem was implemented



in Matlab (The MathWorks Inc. (2023)) using YALMIP
Lofberg (2004) and solved with SDPT3 Toh et al. (1999).

Ezample 1 The switched system (1) with

A= |75 | md 4a= [ vl 02)
taken from (Liberzon, 2003, p. 26). Progression of Al-
gorithm 1 using LMI and LP optimization problems are
shown in Figures 3a and 4a, respectively. Using the LMI
optimization we obtain the minimum average dwell-time
M1 = 3.5195 and using the LP optimization we obtain
p = 3.5636, compared to T vr = 4.5283 and Tp =
4.6241 in Hafstein and Tanwani (2023).

Ezample 2 The switched system (1) with

Al = [_1 _1] and A, = [_1 _10] (13)

1 -1 0.1 -1
taken from Dayawansa and Martin (1999). Progression of
Algorithm 1 using LMI and LP optimization problems are
shown in Figures 3b and 4b, respectively. Using the LMI
optimization we obtain the minimum average dwell-time
Tm1 = 1.1532 and using the LP optimization we obtain
m.p = 0, compared to Ty = 17.0394 and 7p = 0 in
Hafstein and Tanwani (2023).

Ezample 3 The switched system (1) with

—5 1 27 -1 3 1
Ay=1]0 =5 1], Ay =0 -2 0]7
L0 1 -2 0 1 -1
0 0 37 -4 0 -3
Ay = |-2 -1 -3], Ag=|2 -2 4,
-1 0 -2 1 0 -1
—1 0 07
As = |1 -1 -1 (14)
-3 0 —4]

taken from Liu et al. (2021). Progression of Algorithm 1
using LMI and LP optimization problems are shown in
Figures 3¢ and 4c, respectively. An interesting observation:
() is identical to the worst case when only considering
two subsystems at a time. Using the LMI optimization we
obtain the minimum average dwell-time 71,1 = 1.1852 and
using the LP optimization we obtain r7,p = 0, compared
to Tvr = 4.6870 and m,p = 0 in Hafstein and Tanwani
(2023), both of which are improvements over the approach
proposed in Liu et al. (2021).

Ezample 4 The switched system (1) with

—0.5302 0.0012 0.0873
A; = 0.2185 —0.7494 0.5411 ] ,
0.7370  0.1543 —0.3606
—0.5136 0.4419 0.3689
Ay =] 0.1840 —0.3951 0.0080 1 . (15)
0.3163 0.6099 —1.0056

Progression of Algorithm 1 using LMI and LP optimization
problems are shown in Figures 3d and 4d, respectively.
Using the LMI optimization we obtain the minimum
average dwell-time 7y = 8.0090 and using the LP
optimization we obtain 71,p = 3.0305,

2.1
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(a) Example 1

(b) Example 2

0 0.5 1 15 0 0.02 0.04 0.06

(d) Example 4

(c) Example 3

Fig. 3. Progression of Algorithm 1 for the switched system
(1) with the matrices A; from (12) (a), (13) (b), (14)
(c), and (15) (d) using the LMI optimization problem
(7). The dashed lines show p(a) computed with a
brute force approach. Marked with an asterisk is the
location of the smallest 7 on p(«) and marked with a
pentagram is the smallest 7 found with Algorithm 1.

1.45
1.4
< 135

0 0.02 0.04 0.06 0.08 0.1 0 0.2 0.4 0.6 0.8 1

(a) Example 1

(b) Example 2

0 0.2 0.4 0.6 0.8 1 0 0.01 0.02 0.03

(c) Example 3 (d) Example 4

Fig. 4. Progression of Algorithm 1 for the switched system
(1) with the matrices A; from (12) (a), (13) (b), (14)
(c) and (15) (d) using the LP optimization problem
(10). The dashed lines show u(a). Marked with an
asterisk is the location of the smallest 7 on p(«) and
marked with a pentagram is the smallest 7 found with
Algorithm 1.

4.1 Discussion of the Results

Note that for both two dimensional systems (Example 1
and Example 2) we get () ~ €1 + Cy for constants Cy
and Cy, whenever 1(0) # 1, posing the question; can we
find a closed form solution for z(c) in the two dimensional
case? Another observation is that whenever 1(0) # 1, the
smallest 7 is obtained when a — @.

When examining the three dimensional systems (Example
3 and Example 4) this apparent consistency disappears;
the location of the best 7 is no longer predictable nor is
the shape of u(a).

Figures 3 and 4 show how Algorithm 1 follows u(a).
In Table 1 we can see that Algorithm 1 finds the
same 7 as the brute force method with, on average,
an error of 4 x 1072. As expected the LP problems
generally return lower minimum average-dwell times, with
the exception of Example 1. Note that the minimum
of 7 is also a function of K, i.e. the resolution of
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Fig. 5. The minimum average dwell-time 7 obtained using

the LP optimization problem (10) as a function of the
resolution of the triangulation K used.

the triangulation used, and in Figure 5 we depict this
dependency for Example 1. For large K the minimum value
of 7 approaches the minimum value obtained with the LMI
optimization problem, indicating that in this particular
example quadratic Lyapunov functions are optimal.

Note that the brute force computations done for compari-
son are computationally very demanding and can only
be done practically for small optimization problems. For
example, in the Brute Force computations for Example 1
we solved 4,800 optimization problems, in comparison to
200 optimization problems when using Algorithm 1.

Table 1. Results of Algorithm 1 compared to

the results from using a brute force approach

and the method used in Hafstein and Tanwani
(2023), denoted Method ().

Ex.  Method Optimization T a m
Brute Force 3.4180 0.1996  1.9960
Algorithm 1 SDP 3.5195 0.1980 2.0074

1 Method () 5.1929 N/A 2
Brute Force 3.5401  0.9790 1.4142
Algorithm 1 LP (K = 300) 3.5636  0.0860 1.3995
Method () LP (K =500) 4.5283 N/A 1.4
Brute Force 1.1516  1.9990 9.9946
Algorithm 1 SDP 1.1532 1.9800 9.8084

9 Method () 17.039 N/A 3.1
Brute Force 0 * 1
Algorithm 1 LP (K =300) 0 * 1
Method () 0 * 1
Brute Force 1.1845  1.2440  4.3647
Algorithm 1 SDP 1.1852  1.1400 3.8617

3 Method () 4.6870 2.7
Brute Force 0 * 1
Algorithm 1 LP(K = 6) 0 * 1
Method () 0 * 1
Brute Force SDP 7.9994 0.0405 1.3829

4 Algorithm 1 8.0090 0.0428  1.4090
Brute Force 2.9451 0.0146  1.0440
Algorithm 1 LP(K = 25) 3.0305 0.0059 1.0229

5. CONCLUSION

We described a new method to compute the minimum
average dwell-time 7 needed to assert the global exponen-
tial stability (GES) of the equilibrium at the origin for
a switched linear system. For this, the method solves
linear programming (LP) or linear matrix inequality (LMI)
optimization problems as in Hafstein and Tanwani (2023),
but searches for the optimal parameters (a,u) directly,
instead of fixing p and maximizing « as in Hafstein and
Tanwani (2023). We demonstrated our approach on four
examples and made some interesting observations. In all

cases we obtain lower values for 7 than reported in the
literature.

REFERENCES

Andersen, S., August, E., Hafstein, S., and Piccini,
J. (2024).  Simulation and Modeling Methodologies,
Technologies and Applications, chapter Numerical
Computations of Lyapunov Functions for Switched
Linear Systems, 192-213. Springer.

Andersen, S., Giesl, P., and Hafstein, S. (2023). Common
Lyapunov functions for switched linear systems: Linear
programming-based approach. IEEE Control Systems
Letters, 7, 901-906. doi:10.1109/LCSYS.2022.3228857.

Dayawansa, W. and Martin, C. (1999). A converse
Lyapunov theorem for a class of dynamical systems
which undergo switching. IEEE Trans. Automat.
Control, (44), 751-760.

Giesl, P. and Hafstein, S. (2014). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410, 292-306.

Gurobi Optimization, LLC (2024). Gurobi Optimizer
Reference Manual. URL https://www.gurobi.com.
Hafstein, S. and Tanwani, A. (2023). Linear programming
based lower bounds on average dwell-time via multiple
Lyapunov functions. FEuropean Journal of Control, 74,
100838. d0i:10.1016/j.ejcon.2023.100838. URL https:

//laas.hal.science/hal-04161620.

Hagood, J. and Thomson, B. (2006). Recovering a function
from a Dini derivative. The American Mathematical
Monthly, 113(1), 34-46.

Hespanha, J. and Morse, A. (1999). Stability of switched
systems with average dwell-time. In In Proc. 3§th IEEE
Conference on Decision and Control, 2655—2660.

Liberzon, D. (2003). Switching in systems and control.
Systems & Control: Foundations & Applications.
Birkhauser.

Liu, S., Martinez, S., and Cortés, J. (2021). Average dwell-
time minimization of switched systems via sequential
convex programming. IEEFE Contr. Syst. Lett., 6, 1076—
1081.

Lofberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in MATLAB. In In Proceedings of the
CACSD Conference. Taipei, Taiwan.

Sylvester, J. (1884). Sur I’equation en matrices px=xq. C.
R. Acad. Sci. Paris., 99(2), 67-71, 115-116.

The MathWorks Inc. (2023). MATLAB version: 23.2.0
(r2023b). URL https://www.mathworks. com.

Toh, K.C., Todd, M.J., and Titiinci, R.H. (1999).
SDPT3 - a matlab software package for semidefinite

programming, version 1.3. Optimization Methods
and Software, 11(1-4), 545-581. doi:10.1080/
10556789908805762.



