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Abstract: We present a new method to compute the minimum average dwell-time needed to
assert the global exponential stability of the equilibrium at the origin for a switched linear
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subsystems of the switched system using linear programming or linear matrix inequalities
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1. INTRODUCTION

We consider the n-dimensional switched linear system

ẋ = Aσ(t)x, σ : [0,∞)→ P := {1, 2, . . . , P}, (1)

where Ai ∈ Rn×n and the origin is globally exponentially
stable (GES) for all the individual subsystems ẋ =
Aix, i ∈ P, and where the switching signal σ is right-
continuous and only has a finite number of discontinuity-
points on every finite time-interval. We are interested
in the stability of the equilibrium at the origin for the
switched system. Note that even though the origin is GES
for all the individual subsystems, it might not be stable
for the arbitrary switched system (1), see e.g. Remark
2.3 in Liberzon (2003) for a counterexample. However, by
limiting the allowed rate of switching sufficiently, the origin
will always be GES for the switched system (1).

An appropriate concept to discuss the allowed rate of
switching is the so-called average dwell-time, see Hespanha
and Morse (1999) or, e.g., Chapter 3.2 in Liberzon (2003).
We say that a switching signal σ has an average dwell-time
τ > 0, if there exists N0 > 0, such that

Nσ(t, s) ≤ N0 +
t− s

τ
for all t ≥ s ≥ 0,

where Nσ(t, s) denotes the number of discontinuity-points
of σ on the open interval (s, t), i.e. Nσ(t, s) is the number
of times that σ switches value between times s and t. The
set of all switching signals with average dwell-time τ is
denoted by Στ and we talk about the switched system (1)
with average dwell-time τ , if σ in (1) can be an arbitrary
element from Στ . When we say that the origin is GES for
(1) with average dwell-time τ , we mean that there exist
constants C ≥ 1 and β > 0, such that

∥x(t)∥ ≤ C e−βt ∥x(0)∥
for all solutions x(·) to (1) with σ ∈ Στ ; ∥ · ∥ denotes the
Euclidian norm.
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An interesting question is now:

What is the minimum average dwell-time τ ,
such that the origin is GES for the switched
system (1)?

A sufficient condition is given in terms of Lyapunov
functions for the subsystems in the following theorem
adapted from Theorem 3.2 in Liberzon (2003); recall that
K∞ is the set of strictly increasing, unbounded, continuous
functions [0,∞)→ [0,∞), that are zero at zero.

Theorem 1. Assume that for each i ∈ P, there exists a
locally Lipschitz continuous function Vi : Rn → R, such
that

a∗(∥x∥) ≤ Vi(x) ≤ a∗(∥x∥), ∀i ∈ P, (2a)

D+Vi(x, Aix) ≤ −αVi(x), ∀i ∈ P, (2b)

Vi(x) ≤ µVj(x), ∀i, j ∈ P, (2c)

where a∗, a∗ ∈ K∞, α > 0, and µ ≥ 1. Then the origin is
GES for the switched system (1) with average dwell-time
τ , if τ satisfies

τ >
ln(µ)

α
. (3)

Here,

D+Vi(x, Aix) := D+(Vi ◦ x)(t)
∣∣
t=0

:= lim sup
h→0+

Vi(x(t+ h))− Vi(x(t))

h

∣∣∣∣
t=0

= lim sup
h→0+

Vi(x+ hAix)− Vi(x)

h

is the Dini-derivative of Vi along the solution trajectories
of the system ẋ = Aix. The proof can be copied
almost verbatim from the proof of Theorem 3.2 in
Liberzon (2003), although our Vi are only locally Lipschitz
continuous and we use the Dini-derivative instead of the
usual derivative, because with W (t) := eαt Vσ(t)(x(t)) we
have for two consecutive discontinuity times tj and tj+1 of
σ for every tj ≤ t < tj+1, that



W (t) = W (tj) +

∫ t

tj

D+W (τ) dτ

= W (tj) +

∫ t

tj

[
α eατ Vσ(tj)(x(τ))

+ eατ D+Vσ(tj)(x(τ), Aσ(tj)x(τ))
]
dτ

≤W (tj) by (2b),

see e.g. Theorem 1 in Hagood and Thomson (2006).

The following corollary to Theorem 1 was used in Hafstein
and Tanwani (2023) to develop a method to compute a
lower bound on the minimum average dwell-time τ for the
switched system (1), such that the origin is GES.

Corollary 2. Assume that for each i ∈ P, there exists a
locally Lipschitz continuous functions Vi : Rn → R, such
that

a ∥x∥d ≤ Vi(x) ≤ a ∥x∥d , ∀i ∈ P,
D+Vi(x, Aix) ≤ −α∥x∥d, ∀i ∈ P, (4)

Vi(x) ≤ µVj(x), ∀i, j ∈ P,
a, a, α, d > 0, and µ ≥ 1. Then the origin is GES for the
switched system (1) with average dwell-time τ for every

τ >
a ln(µ)

α
. (5)

Note that in the corollary the K∞ functions a∗ and a∗,
have been replaced with the K∞ functions x 7→ a∥x∥ and
x 7→ a∥x∥ for constants 0 < a ≤ a. The corollary follows
immediately from −∥x∥d ≤ −Vi(x)/a.

It is shown in Hafstein and Tanwani (2023), that with
d = 1 and d = 2, one can fix a, a > 0, and µ ≥ 1, and
then use optimization to maximize α > 0, such that the
conditions of Corollary 2 are fulfilled. From formula (5) one
then obtains a lower bound on the minimum average dwell-
time needed to assert GES of the origin for the switched
system (1).

For d = 2 this was done by searching for quadratic
Lyapunov functions Vi(x) = xTPix, i ∈ P, by solving
the linear matrix inequality (LMI) opimazation problem:

maximize α

subject to

aI ⪯ Pi and Pi ⪯ aI, ∀i ∈ P, (6a)

AT
i Pi + PiAi ⪯ −αI, ∀i ∈ P,

Pi ⪯ µPj , ∀i, j ∈ P. (6b)

In these formulas I denotes the n × n identity matrix
and A ⪯ B means that the matrix B − A ∈ Rn×n is
symmetric and positive semidefinite. The variables of the
LMI optimization problem are α > 0 and the symmetric
matrices Pi ∈ Rn×n, i ∈ P.
For d = 1, and this was the main contribution of
Hafstein and Tanwani (2023), linear programming (LP)
was used to parameterize piecewise linear Lyapunov
functions Vi fulfilling the conditions of Corollary 2. In the
three examples presented, the LP approach with d = 1
outperformed the LMI approach with d = 2, which is not
surprising because the set of piecewise linear Lyapunov
functions is richer than the set of quadratic Lyapunov
functions.

The advantage of using the conditions of Corollary 2 on
the Lyapunov functions Vi, rather than the conditions in
Theorem 1, is that the former is linear in the optimization
variables while the latter is bilinear. Hence, α can be
maximized using efficient and well-understood methods;
LP in the case of d = 1 and semidefinite programming
(SDP) in the case d = 2.

However, there is some conservatism involved in the
conditions (4) in Corollary 2 with respect to the conditions
(2b) in Theorem 1. Further, even after the maximum α has
been found using a fixed µ ≥ 1, the corresponding lower
bound τ in formula (3), on the needed average dwell-time
to assert GES, might be suboptimal. Hence, in this paper
we will derive and study methods to find low values for
the average dwell-time τ using the parameters α and µ
directly. We will use LP and LMI optimization problems,
strongly based on those in Hafstein and Tanwani (2023),
to construct Lyapunov functions, but in addition we will
investigate methods to improve the values of α and µ in
order to obtain lower τ .

The paper is organized as follows. In Section 2 we discuss
how to parameterize compatible Lyapunov functions for
the individual subsystems of the switched system (1) using
LP or LMI optimization problems. In Section 3 we describe
our method to compute a minimum average dwell-time
τ that asserts the origin is GES for the system (1) and
in Section 4 we apply our method to four examples and
discuss the results, before we conclude the paper in Section
5.

2. PARAMETERIZING LYAPUNOV FUNCTIONS

The LMI optimization problem we use to construct
quadratic Lyapunov functions is a straightforward adap-
tation of the LMI optimization problem from Hafstein and
Tanwani (2023) discussed in the last section. For fixed
0 < a < a, α > 0, and µ ≥ 1, find symmetric matrices
Pi ∈ Rn×n, i ∈ P, fulfilling

LMI feasibility problem:

aI ⪯ Pi and Pi ⪯ aI, ∀i ∈ P, (7a)

AT
i Pi + PiAi + αPi ⪯ 0, ∀i ∈ P, (7b)

Pi ⪯ µPj , ∀i, j ∈ P. (7c)

If a solution exists to the LMI optimization problem (7),
then the functions Vi(x) = xTPix, i ∈ P, are Lyapunov
functions to the subsystems ẋ = Aix fulfilling Vi(x) ≤
µVj(x) for all i, j ∈ P. Hence, by Theorem 1, τ = ln(µ)/α
is a lower bound on the needed average dwell-time to assert
GES of the origin for the switched system (1).

The LP problem to construct piecewise linear Lyapunov
functions Vi for the switched system (1) is more involved,
mainly because one needs to triangulate the state-space
Rn. As we are essentially using the construction from
Hafstein and Tanwani (2023), we only give a short
description and refer the reader to Hafstein and Tanwani
(2023) for the details. We use the triangulation T F

K , where
K ∈ N is a parameter determining the density or fineness
of the triangulation, which consists of the n-simplices
Sν = co{0,xν

1 ,x
ν
2 , . . . ,x

ν
n}. Here ν is just an index to

enumerate the simplices Sν ∈ T F
K and coA denotes the

convex hull of the vectors in A ⊂ Rn. Two different



simplices Sν ,Sµ ∈ T F
K intersect in a common face, which

might be as small as {0}, and the set-theoretic union of the
simplices is a neighbourhood of the origin. As discussed in
Andersen et al. (2024) the triangulation T F

K has 2nKn−1n!
simplices.

To every simplex Sν = co{0,xν
1 ,x

ν
2 , . . . ,x

ν
n} we associate

the variables V i
xν
j
∈ R, i ∈ P and j = 1, 2, . . . , n; note that

if y = xν
j = xµ

k for two different simplices Sν and Sµ,

then V i
y = V i

xν
j
= V i

xµ
k
. Once the values of the variables

have been fixed, we can define the functions Vi on

Cν := cone{xν
1 ,x

ν
2 , . . . ,x

ν
n}

=


n∑

j=1

λjx
ν
j : λj ≥ 0 for j = 1, 2, . . . , n


through Vi(x

ν
j ) := V i

xν
j
for j = 1, 2, . . . , n, and

Vi

 n∑
j=1

λjx
ν
j

 :=

n∑
j=1

λjV
i
xν
j
=

n∑
j=1

λjVi(x
ν
j ). (8)

Since Sν is an n-simplex the vertices xν
j , j = 1, 2, . . . , n,

are linearly independent and Vi is a well-defined linear
function on Cν . Further, since two different simplices Sν

and Sµ intersect in a common face, Vi is well-defined and
continuous on the set-theoretic union of the Cν , which
is the whole of Rn, because the union of the Sν is a
neighbourhood of the origin. Another useful equivalent
formula for Vi on Cν is

Vi(x) = [vi
ν ]

TX−1
ν x,

where

[vi
ν ]

T :=
[
V i
xν
1
V i
xν
2
· · · V i

xν
n

]
∈ R1×n (9)

and

Xν := [xν
1 xν

2 · · · xν
n] ∈ Rn×n,

i.e. the xν
j are the columns of Xν ; see e.g. Andersen et al.

(2023) or Remark 9 in Giesl and Hafstein (2014) for this
formula.

Given the triangulation T F
K , the LP feasibility problem to

construct Lyapunov functions Vi for the switched system
(1) is: for every simplex Sν = co{0,xν

1 ,x
ν
2 , . . . ,x

ν
n} we

have the constraints for every i, k ∈ P and every j =
1, 2, . . . , n:

LP feasibility problem:

a
∥∥xν

j

∥∥ ≤ V i
xν
j
≤ a

∥∥xν
j

∥∥ , (10a)

[vi
ν ]

TX−1
ν Aix

ν
j ≤ −α[vi

ν ]
TX−1

ν xν
j , (10b)

V i
xν
j
≤ µV k

xν
j
, (10c)

Theorem 3. Any solution to the LP feasibility problem
(10) delivers Lyapunov functions Vi : Rn → R, i ∈ P,
through the formulas (8), that fulfill (2) with appropriate
a∗, a∗ ∈ K∞.

Proof: Follows immediately from formulas (8) and (9) and
the fact that for every x ∈ Rn and i ∈ P, there exists a
Cν , such that x + hAix ∈ Cν for all small enough 0 ≤ h;
hence by (10b) and with x =

∑n
j=1 λjx

ν
j , λj ≥ 0, we have

α

µ

0 α

µ(α)

D

Fig. 1. An example of the area D where (2) has a feasible
solution given α and µ. Note that the area extends
indefinitely as µ → ∞. The function α 7→ µ(α) is
discussed at the beginning of Section 4. All of our
computations indicate that µ(α) is convex, although
we have not been able to prove this statement.

D+Vi(x, Aix) = [vi
ν ]

TX−1
ν Aix

=

n∑
j=1

λj [v
i
ν ]

TX−1
ν Aix

ν
j

≤ −α
n∑

j=1

λj [v
i
ν ]

TX−1
ν xν

j

= −α [vi
ν ]

TX−1
ν x

= −αVi(x). 2

3. MINIMIZING THE MINIMUM AVERAGE
DWELL-TIME

For the switched system (1) define

D := {(α, µ) ∈ (0,∞)× [1,∞) : (2) is feasible}, (11)

see Figure 1 for a schematic picture. By Theorem 1
the switched system (1) is GES with average dwell-time
τ > ln(µ)/α for every (α, µ) ∈ D. To obtain the optimal
minimum average dwell-time that asserts GES for the
system (1), we attempt to

minimize τ := τ(α, µ) :=
ln(µ)

α
on D.

We will approximate the set D using two classes for
the Lyapunov functions Vi. In more detail, we use the
LP problem (10) to compute piecewise linear Lyapunov
functions and the LMI optimization problem (7) to
compute quadratic Lyapunov functions. Hence, checking
whether a point (α, µ) is in D or not involves solving a
feasibility problem. Now one can of course proceed with a
brute force approach and check for numerous points on a
dense grid if (α, µ) ∈ D, but since this is quite expensive
numerically, we will suggest a more clever way to search
systematically for (α, µ) that deliver low values for τ . Note
that since τ is nonlinear and a function of two variables, it
is not trivial figuring out which parameter or parameters to
focus on in its minimization. Methods like gradient descent



are a poor option for optimizing both α and µ at the same
time, because the update[

αk+1

µk+1

]
=

[
αk

µk

]
− η∇τ(αk, µk),

with the learning rate η > 0, does not consider the set D
and τ obtains its minimum τ = 0 for every (α, 1), α ∈ R.

Before we suggest our method to minimize τ in Algorithm
1, we first make the following useful observation:

3.1 Upper bound on α

Recall that a linear system ẋ = Ax is GES, if and only
if A is Hurwitz. We can use this to our advantage and
compute upper bounds on potential α, such that the LMI
optimization problem (7) or the LP problem (10) are
feasible.

LMI: The Lyapunov inequality AT
i Pi + PiAi ≺ 0 has a

symmetric positive definite solution Pi ≻ 0, if and only if
Ai is Hurwitz, see Sylvester (1884). The inequality (7b)
implies

0 ⪰ AT
i Pi + PiAj + αPi

= AT
i Pi + PiAi +

α

2
Pi +

α

2
Pi

=
(
Ai +

α

2
I
)T

Pi + Pi

(
Ai +

α

2
I
)

That is, for (7b) to be feasible, the real parts of the
eigenvalues of Ai +

α
2 I must be strictly negative for all

i ∈ P. This gives us an upper bound αLMI on α for the
LMI optimization problem (7).

LP: Similarly, consider that (10b) implies

0 ≥ [vi
ν ]

TX−1
ν Aix

ν
j + α[vi

ν ]
TX−1

ν xν
j

= [vi
ν ]

TX−1
ν (Ai + αI)xν

j .

That is, for (10b) to be feasible, the real parts of the
eigenvalues of Ai + αI must be strictly negative for all
i ∈ P. This gives us an upper bound αLP on α for the LP
problem (10).

3.2 Our method to minimize the average dwell-time

We suggest the following algorithm to search for points
(α, µ) ∈ D that minimize τ . Recall, that we either use the
LP problem (10) to search for piecewise linear Lyapunov
functions Vi or the LMI optimization problem (7) to search
for quadratic Lyapunov functions Vi. Thus, we first fix the
method to search for feasibility as either the LP problem
(10) or the LMI optimization problem (7). The method
is referred to as the feasibility problem with values (α, µ).
If we are using the LP problem (10) we define α := αLP

and if we are using the LMI optimization problem (7) we
define α := αLMI. Before the algorithm is executed, it is
worthwhile to first check the feasibility for (α, µ) = (0, 1).
If it is feasible then one usually also gets a solution for a
small α > 0 and µ = 1, which shows GES for the switched
system (1) for arbitrary switchings. That is, no minimum
average-dwell time is needed for stability.

Algorithm 1. We fix N,M ∈ N, N ≥ 2, and a, b > 0 and
distribute the values a = τN < τN−1 < . . . < τ2 < τ1 = b
and 0 < α1 < . . . < αM < α uniformly, i.e.

τj = (a− b)
j − 1

N − 1
+ b and αi = α

i

M + 1

Fig. 2. Level sets for τ = ln(µ)/α on [0.2, 1] × [1, 2]. Note
the µ-axis is logarithmical, therefore each level set is
linear in the figure.

for j = 1, 2, . . . , N and i = 1, 2, . . . ,M .

Set i = 1 and j = 1. Then execute:

(1) Solve the feasibility problem with α = αi and µ =
exp(τjαi).

(2) • If there is a feasible solution to the problem, then
increase j by one, i.e. j ← j + 1, and go back to
step (1). That is, we decrease τ from τj to τj+1

and check if this problem, with a lower average
dwell-time and a smaller µ = exp(τj+1αi), also
has a feasible solution.

• If there does not exists a feasible solution to the
problem, then increase i by one, i.e. i← i+1, and
go back to step (1). That is, we increase α from
αi to αi+1 and set µ = exp(τjαi+1) and check if
this problem, with the same average dwell-time
τ = τj , but with larger parameters α and µ, has
a feasible solution.

Note that the algorithm follows the level sets of τ ,
see Figure 2 for an exemplary picture, as long as the
optimization problem is not feasible. If the optimization
problem is feasible we jump to the next level-set below for
the same α and try our luck.

4. EXAMPLES

To visually interpret the examples the following nomencla-
ture is useful: We say that the setD in (11) is approximated
by the function α 7→ µ(α) if graph(µ) ⊂ D. Note that if
(α, µ∗) ∈ D, then (α, µ) ∈ D for all µ ≥ µ∗. Hence, the
epigraph {(α, µ) ∈ (0,∞) × [1,∞) : µ ≥ µ(α)} is a subset
of D. In the following we explicitly write the argument α
in µ(α) to emphasize that µ is a function of α.

For each example we computed µ(α) using both the LP
problem (10) and the LMI optimization problem (7) with
a brute forced approach; checking the feasibility of the
optimization problem on a dense grid in the (α, µ) plane.
Starting with (α, µ) = (0, 1), where the optimization
problem is not feasible, we show how Algorithm 1 first
approaches µ(α) and then walks along it until a minimum
is found. The LP problem was implemented with C++
and solved with Gurobi (Gurobi Optimization, LLC
(2024)). The LMI optimization problem was implemented



in Matlab (The MathWorks Inc. (2023)) using YALMIP
Löfberg (2004) and solved with SDPT3 Toh et al. (1999).

Example 1 The switched system (1) with

A1 =

[
−0.1 −1
2 −0.1

]
and A2 =

[
−0.1 −2
1 −0.1

]
, (12)

taken from (Liberzon, 2003, p. 26). Progression of Al-
gorithm 1 using LMI and LP optimization problems are
shown in Figures 3a and 4a, respectively. Using the LMI
optimization we obtain the minimum average dwell-time
τLMI = 3.5195 and using the LP optimization we obtain
τLP = 3.5636, compared to τLMI = 4.5283 and τLP =
4.6241 in Hafstein and Tanwani (2023).

Example 2 The switched system (1) with

A1 =

[
−1 −1
1 −1

]
and A2 =

[
−1 −10
0.1 −1

]
(13)

taken from Dayawansa and Martin (1999). Progression of
Algorithm 1 using LMI and LP optimization problems are
shown in Figures 3b and 4b, respectively. Using the LMI
optimization we obtain the minimum average dwell-time
τLMI = 1.1532 and using the LP optimization we obtain
τLP = 0, compared to τLMI = 17.0394 and τLP = 0 in
Hafstein and Tanwani (2023).

Example 3 The switched system (1) with

A1 =

[−5 1 2
0 −5 1
0 1 −2

]
, A2 =

[−1 3 1
0 −2 0
0 1 −1

]
,

A3 =

[
0 0 3
−2 −1 −3
−1 0 −2

]
, A4 =

[−4 0 −3
2 −2 4
1 0 −1

]
,

A5 =

[−1 0 0
−1 −1 −1
−3 0 −4

]
(14)

taken from Liu et al. (2021). Progression of Algorithm 1
using LMI and LP optimization problems are shown in
Figures 3c and 4c, respectively. An interesting observation:
µ(α) is identical to the worst case when only considering
two subsystems at a time. Using the LMI optimization we
obtain the minimum average dwell-time τLMI = 1.1852 and
using the LP optimization we obtain τLP = 0, compared
to τLMI = 4.6870 and τLP = 0 in Hafstein and Tanwani
(2023), both of which are improvements over the approach
proposed in Liu et al. (2021).

Example 4 The switched system (1) with

A1 =

[−0.5302 0.0012 0.0873
0.2185 −0.7494 0.5411
0.7370 0.1543 −0.3606

]
,

A2 =

[−0.5136 0.4419 0.3689
0.1840 −0.3951 0.0080
0.3163 0.6099 −1.0056

]
. (15)

Progression of Algorithm 1 using LMI and LP optimization
problems are shown in Figures 3d and 4d, respectively.
Using the LMI optimization we obtain the minimum
average dwell-time τLMI = 8.0090 and using the LP
optimization we obtain τLP = 3.0305,

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 3. Progression of Algorithm 1 for the switched system
(1) with the matrices Ai from (12) (a), (13) (b), (14)
(c), and (15) (d) using the LMI optimization problem
(7). The dashed lines show µ(α) computed with a
brute force approach. Marked with an asterisk is the
location of the smallest τ on µ(α) and marked with a
pentagram is the smallest τ found with Algorithm 1.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 4. Progression of Algorithm 1 for the switched system
(1) with the matrices Ai from (12) (a), (13) (b), (14)
(c) and (15) (d) using the LP optimization problem
(10). The dashed lines show µ(α). Marked with an
asterisk is the location of the smallest τ on µ(α) and
marked with a pentagram is the smallest τ found with
Algorithm 1.

4.1 Discussion of the Results

Note that for both two dimensional systems (Example 1
and Example 2) we get µ(α) ≈ eC1α+C2 for constants C1

and C2, whenever µ(0) ̸= 1, posing the question; can we
find a closed form solution for µ(α) in the two dimensional
case? Another observation is that whenever µ(0) ̸= 1, the
smallest τ is obtained when α→ α.

When examining the three dimensional systems (Example
3 and Example 4) this apparent consistency disappears;
the location of the best τ is no longer predictable nor is
the shape of µ(α).

Figures 3 and 4 show how Algorithm 1 follows µ(α).
In Table 1 we can see that Algorithm 1 finds the
same τ as the brute force method with, on average,
an error of 4 × 10−2. As expected the LP problems
generally return lower minimum average-dwell times, with
the exception of Example 1. Note that the minimum
of τ is also a function of K, i.e. the resolution of



Fig. 5. The minimum average dwell-time τ obtained using
the LP optimization problem (10) as a function of the
resolution of the triangulation K used.

the triangulation used, and in Figure 5 we depict this
dependency for Example 1. For largeK the minimum value
of τ approaches the minimum value obtained with the LMI
optimization problem, indicating that in this particular
example quadratic Lyapunov functions are optimal.

Note that the brute force computations done for compari-
son are computationally very demanding and can only
be done practically for small optimization problems. For
example, in the Brute Force computations for Example 1
we solved 4,800 optimization problems, in comparison to
200 optimization problems when using Algorithm 1.

Table 1. Results of Algorithm 1 compared to
the results from using a brute force approach
and the method used in Hafstein and Tanwani

(2023), denoted Method (∗).

Ex. Method Optimization τ α µ

1

Brute Force
SDP

3.4180 0.1996 1.9960
Algorithm 1 3.5195 0.1980 2.0074
Method (∗) 5.1929 N/A 2
Brute Force

LP (K = 300)
3.5401 0.9790 1.4142

Algorithm 1 3.5636 0.0860 1.3995
Method (∗) LP (K = 500) 4.5283 N/A 1.4

2

Brute Force
SDP

1.1516 1.9990 9.9946
Algorithm 1 1.1532 1.9800 9.8084
Method (∗) 17.039 N/A 3.1
Brute Force

LP (K = 300)
0 * 1

Algorithm 1 0 * 1
Method (∗) 0 * 1

3

Brute Force
SDP

1.1845 1.2440 4.3647
Algorithm 1 1.1852 1.1400 3.8617
Method (∗) 4.6870 2.7
Brute Force

LP(K = 6)
0 * 1

Algorithm 1 0 * 1
Method (∗) 0 * 1

4

Brute Force
SDP

7.9994 0.0405 1.3829
Algorithm 1 8.0090 0.0428 1.4090
Brute Force

LP(K = 25)
2.9451 0.0146 1.0440

Algorithm 1 3.0305 0.0059 1.0229

5. CONCLUSION

We described a new method to compute the minimum
average dwell-time τ needed to assert the global exponen-
tial stability (GES) of the equilibrium at the origin for
a switched linear system. For this, the method solves
linear programming (LP) or linear matrix inequality (LMI)
optimization problems as in Hafstein and Tanwani (2023),
but searches for the optimal parameters (α, µ) directly,
instead of fixing µ and maximizing α as in Hafstein and
Tanwani (2023). We demonstrated our approach on four
examples and made some interesting observations. In all

cases we obtain lower values for τ than reported in the
literature.
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Birkhäuser.

Liu, S., Mart́ınez, S., and Cortés, J. (2021). Average dwell-
time minimization of switched systems via sequential
convex programming. IEEE Contr. Syst. Lett., 6, 1076–
1081.

Löfberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in MATLAB. In In Proceedings of the
CACSD Conference. Taipei, Taiwan.

Sylvester, J. (1884). Sur l’equation en matrices px=xq. C.
R. Acad. Sci. Paris., 99(2), 67–71, 115–116.

The MathWorks Inc. (2023). MATLAB version: 23.2.0
(r2023b). URL https://www.mathworks.com.

Toh, K.C., Todd, M.J., and Tütüncü, R.H. (1999).
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