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Abstract. We investigate positively invariant sets for an ordinary dif-
ferential equation (ODE), that are also positively invariant for numerical
methods to compute its solution. In particular, we show that for an ODE
with an exponentially stable equilibrium and an arbitrary compact subset
of its basin of attraction, we can establish the existence of a larger com-
pact set that is positively invariant for both the ODE, one-step explicit-
and multi-step numerical methods, and even predictor-corrector multi-
step methods. We demonstrate in an example the use of this method
when computing a contraction metric for an ODE with an exponentially
stable equilibrium.
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1 Introduction

We are concerned with the autonomous ordinary differential equation (ODE)
x=f(x), fe C°R"R"), s>1 (1)
Let xo € R™ be an exponentially stable equilibrium of (1) and denote by

A(xg) = {x e R": tll)rgo o(t,x) =x0}

its basin of attraction, where ¢(t, €) denotes the solution x(¢) to the initial value
problem (1) with x(0) = £&. Note that for fixed &, the solution ¢ (¢, &) is defined
in an open interval t € (—cy, o) with ¢1,c0 > 0.

A positively invariant set S C R™ for the ODE (1) is a set such that
¢([0,00),S5) C S, i.e. a solution starting in S stays in S for all future times;

* This work was supported in part by the Icelandic Research Fund under Grant 228725-
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in particular, it is defined for all future times. We will show that for any com-
pact set K C A(xg) we can establish the existence of a compact K C .S C A(xq)
that is not only positively invariant for (1), but also for numerical methods to
approximate its solutions. The latter means, that a numerical method that ap-
proximates the solution trajectory ¢t — ¢(t, &) through a sequence ¢, ~ ¢(hi, £),
where h > 0 is a small constant and 7 € N, fulfills <752 € S for all i € N if

Py =E€5.

These results are important for various methods to compute Lyapunov func-
tions and contraction metrics for ODEs and, indeed, often necessary to show
that these methods always work. In the qualitative analysis of ODEs, Lyapunov
functions play a central role and are studied in virtually all textbooks and mono-
graphs on ODEs, cf. e.g. [38,44,54,60,62,63]. Recently, there has also been much
interest in so-called contraction metrics, which are Riemannian metrics that
correspond to Lyapunov functions on the tangent space [23]. Some references to
contraction metrics are [1,7,9,13,15,40,41,45,16,47,19,57] and the textbook [g].
The analytical computation of a contraction metric for an ODE, a matrix-valued
function, is even more difficult than the computation of a Lyapunov function. For
general ODEs it is very difficult to compute a Lyapunov function or a contraction
metric analytically and therefore one resorts to numerical methods. Numerical
methods for the construction of contraction metrics include [3,16,17,22], see also
the recent review [23]. Numerical methods for the computation of Lyapunov
functions include the following: the computation of rational Lyapunov functions
was studied in [58,59], sum-of-squared (SOS) polynomial Lyapunov functions
were computed using semi-definite optimization (SOS method) in [2,51,52], see
also [13,53] for other approaches using polynomials, and a Zubov-type PDE was
numerically solved using radial basis functions (RBF method) in [14]. For an
overview of more methods see the review [20]. Linear programming was used
to parameterize continuous and piecewise affine (CPA) Lyapunov functions in
[42,50] in the so-called CPA method. In the CPA method the domain of interest,
where the Lyapunov function is to be computed, is subdivided into simplices
and a system specific feasibility problem is constructed, a feasible solution of
which parameterizes a CPA Lyapunov function for the system. In [18,29,30] it
was shown that the CPA method always succeeds in computing a Lyapunov
function for an ODE with an asymptotically stable equilibrium, provided that
the simplices in the triangulation are sufficiently small.

The CPA and the RBF methods were combined in [19] to deliver a method
that inherits the numerical efficiency of the RBF method and the rigour of the
CPA method. This is accomplished by solving a system of linear equations in
the RBF method rather than the linear optimization problem from the CPA
method. The thus obtained function is subsequently verified to be a true Lya-
punov function by investigating whether it fulfills the constraints of the opti-
mization problem. Using this combined method, one is always able to compute
a true Lyapunov function in any compact subset of an exponentially stable equi-
librium’s basin of attraction.
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A similar approach uses numerical integration of solution trajectories of the
ODE to generate values for the variables of the feasibility problem for the CPA
method and then verifies the constraints, see [4,5,6,11,12,33,34,35,36,37,48] and
also [28,31] for more implementation oriented papers. This technique works well
in practice and in [21] it is proved that it always works, assuming that one can
find a compact set that is positively invariant for not only the ODE in question,
but also for the numerical method used to approximate its solution trajectories.

The main contribution of this paper is to assert the existence of such a pos-
itively invariant set in Theorems 2 and 4 and to show how it can be computed
in Theorem 3. Further, we show that one can use a range of practical numerical
methods to approximate the solution trajectories, namely not only one-step ex-
plicit methods, but also explicit multi-step methods and even predictor-corrector
multi-step methods. The results in this paper are also essential for numerical
methods for contraction metrics using numerical integration and quadrature.
In [25], the results of this paper are used to derive a uniform error estimate
on compact sets, needed to prove in [27] that such an integration-quadrature
method always succeeds in computing a contraction metric for an ODE with an
exponentially stable equilibrium.

Let us give an overview of the paper: In Section 2 we recall some facts about
numerical integration methods of ODEs and prove that a wide range of meth-
ods, including multi-step methods, satisfy certain approximation properties, see
Definition 1. In Section 3 we establish the existence of positively invariant sets,
both for the dynamics of the system (1) and a numerical integration scheme to
approximate the solution trajectories in the basin of attraction of an exponen-
tially stable equilibrium; the main result is Theorem 4. Such positively invariant
sets are very useful, in fact necessary, to prove that Lyapunov functions and
contraction metrics can be approximated arbitrarily close on compact subsets
of basins of attraction, using numerical integration with subsequent numerical
quadrature. We prove our results using the fourth-order Adams-Bashforth (AB4)
multi-step scheme initialized with fourth-order Runge-Kutta (RK4) as well as a
predictor-corrector method based on the implicit fourth-order Adams-Moulton
(AM4) method, but we discuss how the results can be extended to AB-RK and
AM numerical schemes of arbitrary order. Finally, we give an example of our
results in Section 4 before we conclude the paper in Section 5.

This paper extends the results presented at the 20" International Confer-
ence on Informatics in Control, Automation and Robotics (ICINCO 2023) and
published in the conference proceedings [26], in several different ways. For exam-
ple, we have extended the previous results to cover general p-th order multistep
methods as well as predictor-corrector methods, and we present a new example.

Notation: We define Ny := {0,1,2,...} and N := Ny \ {0}. We denote the usual
Euclidian norm on R” by |- ||2. The closure of a set U C R™ is denoted by U and
its boundary by OU. The distance between a point x € R™ and a set K C R™ is
represented by d(x, K) := ynelﬁ( ||Ix — yl||2. Throughout the paper, || - || is a fixed,

but arbitrary norm on R"™.



4 Giesl et al.

2 Numerical Integration Methods

As discussed above, when constructing Lyapunov functions or contraction met-
rics using numerical integration, one needs to solve many initial value problems
for the ODE (1), with initial data located at the vertices of a triangulation of a
compact set in R™. Because the number of vertices can be very large, it is advan-
tageous to use multi-step methods rather than single-step methods, as these are
considerably faster for the same degree of precision. We will prove our results
for

1. One-step explicit methods, in particular Runge-Kutta (RK) methods.

2. Multi-step explicit methods, in particular Adams-Bashforth (AB) methods.

3. Multi-step predictor-corrector methods, where the predictor step is done
using AB and the corrector step using the Adams-Moulton (AM) method.

Let us go through these kind of methods and give examples; for a more detailed
discussion see, e.g. [10,39,55] and the references therein.

2.1 One-Step Methods

In a one-step method, (?bz 41 is computed directly from ;]vbl Typical examples are
the RK methods. Let us write down the explicit formulas for RK of fourth order
(RK4): Fix the step-size h > 0 and set ¢, = €. Then, for every i € Ny set

ki = hf(¢;) (2)
ko = hf(:bi +ki/2)
ks = hf(¢; + k2 /2)
ks = hf(¢; + k3)

<?>i+1 = 551- + é(kl + 2ko + 2ks + ky).

RK4 is said to be of fourth-order, because it can be shown that if f in (1) is C4,
then for every compact set K C R™ one can find constants h* > 0 and Crikg
such that

1p1(€) — &(h, €)|| < Cricah® (3)

for all step-sizes 0 < h < h*. The constant Crk4 depends on the derivatives of
f, up to and including the fourth order, in a compact and convex set K D K.
The set K is not really of interest and a large enough set clearly exists; it only
has to be large enough to contain all points in the Taylor polynomial expansions
of f and ¢ needed to make the appropriate estimates, e.g.

B(h,€),01(£),€ +k1/2,€ +ky/2,6 + ks forall €€ K.

The RK4 method is said to be of fourth order, although we have O(h%) in (3),
the so-called local truncation error, because one power of h is lost when one goes
from one-step to many steps.
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Remark 1. Tt is necessary to fix an upper bound h* > 0 for the general case,
because solutions t — ¢(t, &) might blow-up in a finite time. As a simple example
consider the one-dimensional ODE i = f(z) = 22 with solution ¢(¢,£) = £/(1 —
&t). Consider the compact interval K := [—r,r] C R, r > 0. Clearly ¢(h,£) with
& =rand h = 1/r is not defined (division by zero) and therefore the estimate
(3) cannot hold true for all £ € K and and h > 0.

To circumvent this, fix an R > r. For solutions starting in K and not leaving
[-R, R] D K for times in [0, ¢] we have

t

[p(t,€)] < |6(0,8)| + ; Ier[riang]lf(x)ldtSrHR?.

Hence, a solution starting in K will stay in [—R, R] at least for 0 < t < (R —
r)/R?, because then |¢(t, )| < R. It follows that we can choose h* = (R—r)/R?
and for all 0 < h < h* the estimate (3) will hold true for an appropriate constant
Cria- U

Runge-Kutta methods exist of any order, i.e. for any p € N one can derive
formulas similar to (2) and obtain constants h* > 0 and Crkp such that

161(€) = D(h, )| < Cracph?™ (4)

for all £ € K and all 0 < h < h*. The constant Crkp depends on up to the

p-th order derivatives of f in some compact and convex set K O K, which is
sufficiently large. We refer to a Runge-Kutta method of order p € N as RKp.

2.2 Multi-Step Methods

In a p-step method, p € N, ;ISZ»_H is computed from a)j with j =4,i—1,...,i—p+1.
Obviously a one-step method has p = 1, and if p > 1 then the method is called a
multi-step method. A typical example is the Adams-Bashforth four-step method
(AB4), given by:

Fix the step-size h > 0 and set &0 =&, (753- ~ ¢(jh, &) for j = 1,2, 3. Then,
for every i € N, ¢ > 3, set

Bivs = &t o (550(,) — 59K(§,_) + 8T8 (i_y) — 9F(i3)) . (5)

For multi-step methods like AB4 the error estimate is usually formulated dif-
ferently to one-step methods: for a compact set K C R"™ there exist constants
h* > 0 and Capa > 0 such that for all 0 < h < h* we have

i1 (€) — d((i + 1), €)|| < Capsh® (6)

if ;,z’v)j = ¢(jh,€&) € K for j =4,i—1,i—2,4— 3 in formula (5), i.e. if the previous
approximations ¢; are exact and are all in K. Again, the constant Caps depends
on the derivatives of f, up to and including the fourth order, in a compact and
convex set K D K that is sufficiently large.
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Since the values ¢(jh, &) for j = i,i — 1,4 — 2,4 — 3 are usually not known,
we cannot set ;zvbj = ¢(jh, &) for j =i,i— 1,1 —2,i — 3. These values are usually
fixed by using a one-step method for the first three steps, e.g. by using RK4.

For any p € N one can define the p-step Adams-Bashforth method (ABp).
The general formula is

p—1 p—1
Giyr =i +h Y aif(¢,_;), where Y a;=1. (7)
j=0 j=0

Again, for a compact set K C R and a maximum step-size h* > 0, there exists
a constant Capp > 0 such that

Is41(6) — @((i + D, €)|| < Camph?™ (8)

for all step-sizes 0 < h < h*, if ; = (jh,&) € K for j =i,i—1,...,i —p+1
in formula (7), i.e. if the previous approximations Esj are exact and are all in K.
Unsurprisingly, the constant Capp depends on the derivatives of f, up to and
including the p-th order, in a compact and convex set K O K that is sufficiently
large. The first values ¢,(§), j = 1,2,...,p— 1 are usually initialized by using a
p-th order one-step method, e.g. RKp.

2.3 Corrector Step

Commonly, when the Adams-Bashforth method is used to solve an initial-value
problem, a so-called corrector step is added. That is, the value ¢, is updated
after the initial computation using the implicit Adams-Moulton (AM) method.
To give a concrete example, consider the AB4 method above, but set

~pre

DU = Bt g (556(B) — 59F(§,_) + BT0(B,) — 9 (Bi)) - (9)

to underline that we are going to update the predicted value &ffl later. The
corrected value is then computed using the three-step Adams-Moulton (AM4)
method, i.e.

Git1 = <~bz + % (9f(<$};jrel) + 19f($i) - 5f(£73i—1) + f(%i—?)) . (10)

We denote this combined method by PC4, i.e. first predicting using AB4 and
then correcting using AM4; we call it AM4, and not AM3, although it only uses
the three last steps, because it can be shown to be a fourth-order method. The
error estimate can be given similarly to above for the AB4 method. That is, for
a compact set K C R™ there exists constants A* > 0 and Cpcyg > 0 such that
for all 0 < h < h* we have

Is41(6) — @((i + D, €| < Cpeah® (11)
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if ¢; = ¢(jh,€) € K for j =i,i—1,i—2,i—3 in formula (10) and (9), ie. if the
previous approximations Z;Sj are exact and are all in K. Once again, the constant
Cpc4 depends on the derivatives of f, up to and including the fourth order, in a
compact and convex set K D K that is sufficiently large. As before, the values
¢, for j =4,i—1,i—2,7—3 are in practice computed using a one-step method,
e.g. RK4.

Again, one can for any k € N define PCp using ABp for the prediction and
AMp for the correction. The general formula is then given by

p—2 p—2
~ ~ ~pre ~
Gip1 =@ +h [ baf(P )+ ijf(¢i—j) ; where Z bj =1 (12)
§=0 j=—1
and Zjv)lpjrel is equal to the right-hand-side of (7), i.e.
p—1 p—1
~pre  ~ ~
Gi1 =i +h Y aif(p;), where Y a;=1. (13)
§=0 3=0

As before, there exist constants h* > 0 and Cpcp > 0 for each compact set
K C R", such that

141 (€) = D((i + DR, E)|| < Cpcph?™ (14)

for all step-sizes 0 < h < h*, if a)j =¢(jh, &) e K for j=id,i—1,...,i—p+1in
formulas (13) and (12), i.e. if the previous approximations Z;Bj are exact and are
all in K. The constant Cpcp, depends on the derivatives of f, up to and including

the p-th order, in a compact and convex set K O K that is sufficiently large.
The first values ¢;(£), j = 1,2,...,p — 1 are usually initialized as in the ABp
method by using a p-th order one-step method, e.g. RKp.

2.4 Uniform Error Estimate

The error estimates (8) and (14) (also (6) and (11)) are not in a form which
is useful for our application of computing Lyapunov functions and contraction
metrics. We need require error estimates as in the following definition, uniform
for all the methods, where one does not assume ¢; (&) = ¢(jh, &) for the previous
steps.

Definition 1. (Order of numerical methods)
A numerical method to solve

x =f(x), feCPR™";R"),

is said to be of order p € N, if for any compact set S C R"™ there exist constants
C,h* > 0 such that for all step-sizes 0 < h < h* we have for any i € Ny that

H(~ﬁz+1(£) - ¢(hv%(€))” < Chrtt
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whenever

D0(€), D1 (£),..., ;(€) € 5.

We now prove that all the numerical integration methods we have discussed,
that is,

(i) RKp,
(ii) ABp initialized with RKp,
(iii) PCp initialized with RKp,

are all of order p in the sense of Definition 1.

Theorem 1. (Error estimate for RKp, ABp, and PCp) Consider the system
(1) and assume that £ € CP(R™;R™). Then the numerical integration methods
(i) RKp, (i) ABp initialized with RKp, and (iii) PCp initialized with RKp, are
of order p € N in the sense of Definition 1.

Proof. The case (i) is simple, as it follows directly from the discussion in Section
2.1. Note that p = 1 corresponds to a single step method and reduces to case
(i). For the rest of the proof let the order p € N, p > 2, be fixed and 0 < hy < 1
be small enough, so that (4) holds for all £ € S and all 0 < h < hg. We prove
the cases (ii) and (iii) successively.

Case (ii): ABp initialized by RKp.

We will first define the sets S, S’, S with the following goal: S’ contains the
next iterate (i + 1) of both the numerical approximation and the true solution,
if the first ¢ iterates lie in S} S is an even larger set that ensures that if we apply
the backward flow ¢([—(p — 1)h2,0],y) to an element y of S’, then the result is
contained in S. Moreover, we choose the step-size ho > 0 sufficiently small that
the backward solution exists.

In detail, we fix a constant 0 < hy < hg and a compact, convex set S’ D S
such that ¢(h,§) € S’ for all £ € S and ¢, 1(§) € S’, whenever ¢;(§) € S, for
J=20,1,2,...,i, ¢ € Ny, and when using step-size 0 < h < hy. Furthermore,
let 0 < hy < hi be a constant and S be a compact, convex set such that
¢([—(p — 1)h2,0],5") exists and

#([—(p — 1)hs,0],8") C S.

Fix an arbitrary, but constant &€ € S for the rest of the proof of case (ii).
For a fixed step-size 0 < h < hy denote ¢,;(y) = ¢(ih,y), y € S and
i > —(p—1) with ¢ € Z, which is defined by the above assumptions. Furthermore,

denote by g?)i, i € Ny, the approximation to ¢,(&) generated by ABp initialized
by RKp.

For the steps with the ABp method let us define, with ag,a1,...,ap—1 the
constants from (7),

p—1
ABD(Xi, Xi—1,. .+, X (p—1)) 1= X + hzajf(xifj% (15)

=0
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We consider two choices of the x;; if we choose them to be the iterates of the
numerical method we obtain by the formula (7) for the ABp method that

$ip1 = ABp(o;, ..., (Eif(pfl)) if t>p—1

If we choose them to be the true solution, then we have the following result: if
0 < h < hy and y satisfies ¢,(y) € S’, then ¢;(y) € Sfor j =4,i—1,...,i—(p—1)
by the definition of S and there exists a constant Capp > 0, such that

| ABD(¢;(¥), - -+ b (p-1)(¥)) = Dit1 (¥)|| < Capph? ™. (16)

This follows from (8) by setting K := S.
We now prove case (ii) by induction.

Denote by (I) the proposition:

There exist constants C,C*, h* > 0, such that for every time-step 0 <
h < h* we have for any i € N that

é; — b1 (i)l < CRPTL, (17)

whenever a&k € S for k =0,1,...,i — 1, and additionally we have for
i>p—1and with 7 =0,1,...,p— 1, that

Ii—; — & ()l < C*hP 2. (18)

Recall that ¢_; (;,z’v)z) is defined by the assumptions and lies in S. Note that case
(ii) follows from (17) in (I); (18) is just needed for the induction.
To prove (I) let us first fix the constants. Set

p—1
A= "ay,
j=1

let L > 0 be a Lipschitz constant for £ on S, i.e. ||[f(x) — f(y)| < L||x —y]|| for

all x,y € g, and set
C := 2max{Crkp, CaBp},

p—1
cr.=C Z ek,
k=1

and

B = min{hg,(w)} > 0. (19)

We first note that case (i) implies that (I) holds true for i = 0,1,...,p — 1,
i.e. when we are using RKp to generate the values ¢,. Indeed, (17) follows directly
from case (i).
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To show (18) for i = p—1 and j = 0,1,...,p — 1, we have, noting that
®i_jir—1 €S by assumption,

||<~b¢7j - (7573'(;731‘)” - ||¢O($i7j) - (bfj((%i)H
Z [¢7k+1($ifj+k71) - ¢Lk(g%>j+k)} H

k=1
] ~

< G b1 (Pijin1) — D i(bijpi)l
k=1

< khLH¢1(g>i—j+k—1) - ¢0(($i—j+k)H
1

k

<

<.

< Z M|y (D jin—1) = Proi—jrn—n

k=1

ekhL CRKp hp+1

M-

=
=

—1

Z ekth-‘,-l

k=1
= C*prtt

’U

IN
Q

where we have used the well known estimate
I¢(t,a) — ¢(t,b)[| < e""l[]a — b (20)

as well as (4) with K = S.

We now show that (I) holds true for ¢ > p. For this assume that (I) holds
true for all natural numbers up to and including some ¢ > p—1. We assume that
¢, € S for k=0,...,i and show that (I) also holds true for i + 1.

Let us first consider (17) with 4 replaced by i + 1. Observe that

||€7’i+1 - ¢1(52)H = | ABP(giv cees (,Z)if(pfl)) - ¢1(<7’)||
< ABP(@y - i p1)) = ABD(Po(@y); - s o1y (D7)

+ || ABp(¢(;). - . -, ¢7(p71)(a)i)) — ¢1(8))] (21)
and for the second term on the right-hand-side we have the bound
| ABp((7), - - _(p—1) (@) — D1(d))l| < Capph”™ (22)

by (16) since ¢, € S C .
To bound the first term on the right-hand-side of (21) we use the formula
for ABp, ¢0(¢ ) = ¢z, the Lipschitz condition on f on S, and the induction
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hypothesis (18), and we get

IABD(Gs- - By p1y) = ABP(o(@7), - b_ 1y ()]
<h a; [f((%i,j) - f(dLj(Jh-))]

=0

p—1
<hY_|a|LC*hPT!
j=1
= ALC*hP+2. (23)

Note that (?)i,j €S cSand ¢,j(;;v$i) € S. Hence, (21), (22), and (23) deliver

141 — $1(di)ll < ALCThPH2 4 Capph?*! < CHPH, (24)

because

ALC*h + Capp < ALC*h* + Capp < C

by (19). Hence, the bound (17) in (I) holds true for i replaced by i + 1.

Let us now consider the bound (18) in (I) for ¢ replaced by i + 1. The case
j =0 is obvious and from

Hg)i-i-l—j - ¢—j($i+l)“ = ||¢—j(¢j(($i+1—j>) - ¢_j(<75i+1)||

h ~ ~
<e* ||¢j(¢i+1—j) - ¢’i+1||
the case j =1, i.e.

||;Z§z - ¢—1($i+1)|| < eLh||¢1($i) - g’i-}-lH < Crhrt!
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follows from (24), el"C < C*, and (20). The general case for j < p — 1 follows
similarly from (24), the induction hypothesis (17), and the definition of C*:

||($i+1—j - ¢_j(<757:+1)|| = ||¢0($i+1—j) - ¢—j($i+1)”
J
> |:¢)17k(¢ifj+k) - ¢17(k+1)(¢i7j+k+1)}

=1

o

11—k (Di—jin) — Pt (Pizjpnrn)
1

<

IN

ekhLHQZ)l(gifjJrk) - d)O(g)ifjJrkJrl)”

IN

ekhL||¢1<¢i—j+k) - ¢1+i—j+k||

M- T I T

ekhL Chp+1

IN
i
RN

ek:L Cthrl

(]

b
I
—

*pPtt

Q

Thus, we have proved the bound (18) of (I) for ¢ replaced by i + 1, which shows
case (ii).

Case (iii): PCp initialized by RKp.

As in case (ii), fix a constant 0 < h; < hg and a compact, convex set
S" > S such that ¢(h,€&) € S’ for all £ € S and (ﬁ?j_el({), ¢;.1(§) € S, whenever
¢;(&) € S, for j =0,1,2,...,4, i € Ny, and when using step-size 0 < h < hy.
Furthermore, let 0 < hy < h; be a constant and S be a compact, convex set
such that ¢([—(p — 1)hs,0],S") exists and ¢([—(p — 1)he,0],5") C S.

Fix an arbitrary, but constant £ € S for the rest of the proof.

For a fixed step-size 0 < h < hg denote ¢;(y) := ¢(ih,y), y € S and
i > —(p—1) with ¢ € Z, which is defined by the above assumptions. Furthermore,
denote by ¢;, i € Ny, the approximation to ¢, (&) generated by PCp initialized by

RKp. That is, ¢, = &, the values ¢, are generated by RKp for i =1,2,...,p—1
and for i = p,p+1,... we set, using (12)

(szgi—&-l = PCP((;% 55i_1, cee ai—(p—l))a
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where
p—2

PCp(x4, ..., Xi—(p—1)) :=Xi+h | b_1f(ABp(x, ..., X;—(p—1))) + Z bif(xi—j)
j=0

is defined similarly to ABp in (15), but using the AMp formula (12).
If 0 < h < hy and y satisfies ¢,;(y) € S’, then ¢;(y) € S for j = 4,i —

1,...,i— (p — 1) by definition of S and there exists a constant Cpcp > 0, such
that

IPCP(:(¥): -+ bi_(p—1)(¥)) = Piza1(¥)I| < Cpcph? ™. (25)

This follows from (14) by setting K := S.
We now prove case (iii) by induction, similar to how we proved case (ii).

Denote by (II) the proposition:

There exist constants C,C*, h* > 0, such that for every time-step 0 <
h < h* we have for any i € Ny that

;= 1 (di)|l < CAPF, (26)

whenever &k € Sfor k=0,1,...,i — 1, and additionally we have for
i>p—1and with 7 =0,1,...,p— 1, that

Ii—; — & ()l < C*hP T2, (27)

Note that case (iii) follows from (26) in (II); (27) is just needed for the induction.
To prove (II) let us first fix the constants. Set

p—1 p—2
A::Z|aj|, B::Z|bj|,
j=1 j=1

let L > 0 be a Lipschitz constant for f on S and set

C:=2 maX{CRKp, Cpcp},

p—1
C*:= CZ ekl
k=1

and

* o C —Cpcp
h '_mm{hz’LC’*(B—FALb_l)}>0' (28)
As in the proof of case (ii) we see that (II) holds true for ¢ =0,1,...,p—1
i.e. when we are using RKp to generate the values E;EZ
We now show that (II) holds true for ¢ > p. For this assume that (II) holds
true for all natural numbers up to and including some ¢ > p—1. We assume that
¢, € S for all k=0,...,i and show that (II) also holds true for ¢ + 1.

)
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Let us first consider (26) with 4 replaced by i + 1. Observe that

i1 — D1(D) = IPCD(Dy. - - Bs 1)) — 1)l
< PCP(g’ia ce 3)7,'7(1)71)) - PCp(‘bO(&i)v R d)—(pfl)(g)i))”

+ [IPCp(do (i) - -, D_(p—1) (D)) — D1(d) | (29)
and for the second term on the right-hand-side we have the bound
IPC(dg(); - o1y (D)) — D1(&)|| < Croph?™ (30)

by (25).

To bound the first term on the right-hand-side of (29) we use the formula
for PCp, that ¢y(¢;) = ¢;, the Lipschitz condition on f on S, and induction
hypothesis (27), and we get

IPCP(Ss,- -, bi_(p—1)) =~ PCP(do (1), - -+ D_ ) (1))l
<o (FABDG . y1)) ~ TABD @) 6y (B0)

< BLIb-1| [|ABD(@y, - fi 1)) = ABD(S(0), - b))

p—2
+hLY (bl || by — D_j(¢)
j=1
< by |ALRC*hP*3 + LBC*hP*?, (31)

where the last step follows by (23) for the first term and the induction hypothesis
for the second.
Hence, (29), (30), and (31) deliver

Iis1 — D1()ll < b1 [ALPC*hPTE 4 LBC*hP2 4 Cpeph? ™ < CRPH,

because
b_1|AL*C*h* + LBC*h + Cpcyp < C

by (28). Hence, the bound (26) in (II) holds true for i replaced by i + 1.

Let us now consider the bound (27) in (IT) for ¢ replaced by ¢ + 1. That this
estimate holds true can be proved from the induction hypothesis exactly in the
same way as in the proof of case (ii), which concludes the proof. O

We are now ready to study positively invariant sets for the ODE (1), that
are also positively invariant for (i) RKp, (ii) ABp initialized with RKp, and (iii)
PCp initialized with RKp.
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3 Positively Invariant Sets

A positively invariant set for system (1), i.e. a set P C R™ such that ¢(¢,x) € P
for all t > 0 whenever x € P, is in general not positively invariant for a numerical
procedure to approximate its solution trajectories. This is, for example, shown
in [26, Example 3.1] for the system 6 = 1, # = —r(1 — r2), in polar coordinates
and the positively invariant set {(r,0) € [0,1] x [0, 27)}.

We now show in Theorem 2 and Corollary 4 that for general systems, sublevel-
sets S C R” of certain Lyapunov-like functions V" are positively invariant for both
the system (1) and numerical methods to approximate its solution trajectories,
if the step size h > 0 is sufficiently small.

Theorem 2. (Positively invariant sets) Consider the system (1), let
V € CYR™;R) and let S be a compact connected component of the sublevel set

Vi ((~o0,m]) :={x € R": V(x) <m}, meR.

Further assume that VV (x) - f(x) < 0 and that VV (x) points out of S for every
x € 0S; that is, for every x € 35 there exists a h > 0 such that

[x+ (0,)VV(x)] NS =0.
where
x+ (0,h)VV(x):={y e R": y =x+tVV(x), t € (0,h)}.

Then S is positively invariant for (1).

Further, assume that £ € CP(R™;R™) and that we have a numerical method
of order p in the sense of Definition 1. Then there is an h' > 0 _such that if
the time-step h of the numerical method fulfills 0 < h < I/, then ¢, (&) € S,

whenever %k(é) €S fork=0,1,2,...,i, i € Np.
Proof. Define
1
0= ~5 )I{réaa)éVV(x) -f(x) >0,
ie. VV(x)-f(x) < —24 for all x € 95, and let € > 0 be such that
VV(x)-f(x) < - <0 forall xeW:={xeR":d(x,05) < 2¢}.

To see that S is positively invariant for (1), consider that if it is not, then
some solution trajectory starting in S must intersect 0.5 at some point x and then
leave S, that is, there exists an x € S and an 7* > 0 such that ¢(r,x) € W\ S
for all 0 < 7 < 7*. Then

m < V(g x) =V + [ V(@)
T d
=m +/0 VV(¢(r,x)) - Ed)(T’ x)dr

=m—+ /T VV(¢<T7 X)) . f((i)(T7 X))dT <m- 57_*’
0
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a contradiction.
In order to prove that S is also positively invariant for the numerical method
for small enough time-steps, set

V:i={xeR": d(x,05) <e} CW,
F = max{meag(Hf(x)Hg, 1}, and

B := min{e/(2max{F,C}),1,7*,h*}.

Here and later in the proof, C, h* > 0 are the constants for the numerical method
from Definition 1.
Then, for x € S\ V and 0 < h < h' we have

el

h
() =xlla < [ (s, s < hF < Lo < ©

and it follows that
d(¢p(h,x),S\V) <¢€/2, Vxe S\V. (32)

Note that from (32), Definition 1 and for ka(g) e Sfork=0,1,2,...,1, we

have

d(d;1(€), S\ V) < d(@(h, §;(€)), S\ V) + | diy1(€) — d(R, ;(€))]|2
<e€/2+€/2=F¢,

using that ChP*t! < & due to the definition of A’. Hence, czi+1(§) € S if the

time-step of the numerical method fulfills 0 < h < A/, whenever ¢, (§) € S for
k=0,1,2,...,i and additionally ¢,(&) € S\ V.

To finish the proof, we need to show the statement in the case (75,6(6) € S for
k=0,1,2,...,i and

x=¢,(&)esSnNV.

We assume on the contrary that there are sequences §; € S and 0 < h; < I/,
hj — 0 as j — oo, such that

~J

¢ij+l(€j) ¢ S
for all j, although

~7

Fo(€)) B1(&)), .. PL(E)ES and Gl () €SNV,

Here ) _ ) .

~J ~j ~J ~J

¢O(£j)7 ¢1(€g)7 7d)ij(€j)v ¢i]‘+1(£j)
is the sequence generated by the numerical method with initial value §; € S and
step-size h;.
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Note that since S is positively invariant for (1) we have ¢(h;, J)ZJ &) €S
and therefore
J

~ - -
V((ﬁij (§;)) <m and V((ﬁ(hj,(ﬁij (&;))) <m for all j.
Further, there exists I € N such that for all j > I we have

d)(@hj,;zvsz (§;)) ewns forall 6€l0,1] and V(&Zjﬂ(ég‘)) > m.

Moreover, there is a convex and compact set S > S such that ESZ] +1(&5) € S for

all j. Let Ly be a Lipschitz constant for V' on S and recall that by Definition 1
we have

161 1(€;) — b(hs, bl (€,)l2 < CREF.

Now
V(@1,4(6) = V(6. 81,6)) | _ Lvld, 1(€,) — #lhs. b1, (€,)
< (33
h; h;
_ LyChE*™
<=
= LyCh?,
V(i) -VGLE)  m-m 5
h; h;
for all j > I.

Define g;(t) = V(qb(t,g)i_ (§;)))- By the Mean-Value theorem there exists
6; € (0,1) such that
95(hj) = 9;(0) = g'(0;1;)h; < —oh; (35)
holds for all j > I. From (34), (33), and (35) it follows that

~J J

< ey @lr(€) ~ V(G (€,)
Jj—o0 hj
~j ~j
< lim sup V(¢i_7+1(£j)) - V(¢(hj, ¢ij (5;)))
j—oo & |
 V(e(hy, 61 (€,) — VI, (€))
+ lim sup
j—roo hj
= 0+ limsup 793‘(}@3‘)}1— 9;(0)
Jj—roo J
<0-6<0,

which is a contradiction and thus the theorem is proved.
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Theorem 2 establishes the existence of a positively invariant set for both
the ODE and the numerical method to approximate its solution trajectories. To
obtain such a set computationally, one can employ the RBF-CPA Lyapunov-
like function. For this method one first computes Lyapunov-like function V' by
approximately solving Zubov’s PDE

with a suitable positive function g(x) using generalized interpolation in repro-
ducing kernel Hilbert spaces and then interpolate its values over the simplices
of a triangulation T, see [19,24] for details.

In the following theorem, CPA[T] denotes the set of such interpolating func-
tions, called continuous piecewise affine (CPA) functions, which are continuous
and affine on each simplex of the triangulation 7. Further, VV,, € R™ denotes
the constant gradient of V in the interior of a simplex &, € 7.

Theorem 3. (CPA version of Thm. 2) Consider the system (1). Let V€ CPA[T]
and assume S is a compact connected component of V=1((—oo,m]), m € R. As-
sume that VV,, points out of S at every x € S NS, and that this is true for
every &, € T. Additionally, assume that there is a constant ¢ > 0 such that
VV, - f(x) < —c for every x in a neighbourhood of S and every v such that
x €6, ie ifx € 6, NG,, then both VV, - f(x) < —c and VV,, - f(x) < —c.
Then S is positively invariant for (1).

Further, assume that £ € CP(R™;R™) and that we have a numerical method
of order p in the sense of Definition 1. Then there is an h' > 0 _such that if
the time-step h of the numerical method fulfills 0 < h < I/, then ¢;, (&) € S,

whenever ¢, (&) € S for k=0,1,2,...,1i.

Proof. Essentially, the proof is the same as the proof of Theorem 2; the existence
of 6 = ¢/2 and ¢ > 0 now follow directly from the assumptions. The only
reasoning that needs modification is why

95(h;) = 9;(0) < =0h;.
For V € CPAJT] this follows because for

Vig(h,x)) = V(x)

D1V (x) := limsup

h—0+ h
we have
DtV (x) = VV, - f(x) < -4,
where &, is a simplex such that x € &,, see e.g. [32, Lem. 2.2], and by a

generalized Mean Value Theorem, see [56] or [61, Thm. 12.24].

The following theorem uses the existence of a Lyapunov function to show the
existence of a positively invariant set for both the flow and a numerical method
satisfying Definition 1 by using Theorem 2.
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Theorem 4. (Positively invariant sets for the system and the numerical method)
Let x¢ be an exponentially stable equilibrium of (1), where f € CP(R™; R™) with
p €N, and let K C A(xo) be compact. Then there exists a compact and connected
set S, K C S C A(xg), with the following property:

Assume we have a numerical method of order p in the sense of Definition
1. Then there exists a constant h' > 0, such that S is positively invariant both
for the original flow ¢(0,€) = € € S, t — @(t, ), induced by (1), and for the
sequences qzl(ﬁ), 1 € Np, generated by the numerical method with step-size h,
0 < h <K, for the initial-values € € S. In other words, (Nbl(E) €S forall€ €S
and all 7 € Ny.

Proof. By [14, Thm. 2.46] there exists a Lyapunov function V for the system (1)
fulfilling V(x0) = 0 and

VV(x) - £(x) = =[x = x0[31/1 + [[f(x)I3

for all x € A(xg). We set r := ma;(cV(x) and S := V~1([0,7]); hence K C S.
xE

Since V is also a Lyapunov function for the system
* = £(x)(1+ [£(x)[3) 72,

with a bounded right-hand-side, the set S C A(x¢) is compact. Since V(¢ (¢, &)) <
r for all ¢ > 0 and

xo € ¢([0,00),6) c V7I([0,7]) = §

for all £ € S, the set S is also connected. Using this Lyapunov function and
Theorem 2 for the numerical method, the existence of A’ > 0 with the claimed
properties follows.

Remark 2. By Theorem 1 any (i) Runge-Kutta method of order p (RKp), the
(ii) Adams-Bashforth method of order p (ABp) initialized by RKp, and (iii)
predictor-corrector methods of order p using ABp for the predictor step and
the Adams-Moulton method of order p for the corrector step, p € N, are all
numerical methods of order p in the sense of Definition 1, and thus, fulfill the
assumptions in Theorem 4. These results are used in [21] and [25] to prove that
Lyapunov functions and contraction metrics can be approximated arbitrarily
close on compact sets using numerical integration and quadrature.

4 Example

We demonstrate our results by computing a positively invariant set and a con-
traction metric for an SIRS model, which includes susceptible (S), infected (I),
and recovered (R) individuals. It is an extension of the well known SIR model,
but where recovered individuals can lose their immunity after a certain period
and become susceptible again. The SIRS model is particularly relevant in the
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context of diseases for which vaccination is available and plays a significant role
in disease dynamics. It is described by the following equations:

Szfﬁ%JruR
I =p3L —41
R=~I — uR

where

— S is the number of susceptible individuals,

I is the number of infected individuals,

R is the number of recovered (and temporarily immune) individuals,

[ is the transmission rate of the disease,

~ is the recovery rate,

— w is the rate at which recovered individuals lose immunity and return to the
susceptible state.

N is the total population (assumed constant, N = S + I + R).

The SIRS model’s equilibria will depend on the parameter values and can
include disease-free equilibria (where I = 0) and endemic equilibria (where the
disease persists in the population). We set the parameters as:

- =03
- v=0.1
— pn=0.02

The dimension of the model can be decreased by one by replacing R with N—S—TI
(since the total population is assumed to be constant). Further, we use the

proportional variables x := % and y = % to improve the visibility of the
solutions. This results in the following equivalent 2-dimensional system:

y =By —vy
The system has a disease-free repelling equilibrium at (1,0), and an endemic
asymptotically stable equilibrium at xq := (%, %%) ~ (0.33,0.11). In order

to compute a positively invariant set S for this dynamical system as in Theorem
3 we used the method described in [24] and motivated by [19]. In this method
one first solves numerically the Zubov-like PDE VV(x) - f(x) = —||f(x) — xo||2
using collocation with radial basis functions, where xq is the (asymptotically
stable) equilibrium under consideration and f is the right-hand side function in
(36). We used 9,835 collocation points with a hexagonal grid to cover the area
[—0.667, 1.333] x [—0.769, 0.991] except a circle of radius 0.2 around (1,0). Then
we interpolate the numerical solution V' by a CPA function Vp on a simplicial
complex to obtain a function with negative orbital derivative, except in the area
plotted in yellow in Figure 1. Sublevel-sets of the function Vp can now be used
to obtain sets, that are positively invariant, both for the ODE (36) and for
numerical methods to approximate its solutions. Such a positively invariant set
S is plotted in cyan in Figure 1 around the equilibrium x¢ (the green points).
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The results of this paper were used to prove that we can always compute a
contraction metric using numerical integration, see [25]. As an example, we use
here the AB4 multi-step method (initialized with RK4) for numerical integration
as well as quadrature of the solution trajectories of (36) to compute a contraction
metric. The conditions for the contraction metric are fulfilled in the white area,
or equivalently, the area where it fails the conditions is depicted in red and blue.
Since the sublevel set of Vp has empty intersection with the red and blue area,
the sublevel set is a subset of the basin of attraction of the equilibrium.

0.7 T T T T T T T T T

0.6 —

0.5 -

0.4 -1

0.3 —

01

Fig. 1: The system (36). The green point at (0.33,0.11) is the asymptotically stable
equilibrium xo and a positively invariant sublevel set of Vp is drawn in cyan around
it. The yellow area is where the orbital derivative of Vp is not negative, the red area
is where the computed contraction metric fails to have a negative definite derivative,
and the blue area is where it fails to be positive definite. In the rest of the area it is a
contraction metric. This shows that the sublevel set inside the cyan curve is a subset
of the basin of attraction of xg.

5 Conclusions

We have shown that for an ODE with an exponentially stable equilibrium xg
and any compact subset K of its basin of attraction A(xg), we can find a com-
pact and connected set S, K C S C A(xg), that is positively invariant, both for
the ODE and its numerical approximation. We have established that this prop-
erty holds for a variety of established numerical methods, namely Runge-Kutta,
Adams-Bashforth, and predictor-corrector methods based on Adams-Bashforth
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and Adams-Moulton, all of arbitrary order. Finally, we demonstrated a construc-
tive way of how to compute such positively invariant sets in practice and have
shown this in an example.
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