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Abstract: Dayawansa and Martin proved in 1999 that locally Lipschitz continuous and
homogenous Lyapunov functions for a switched linear systems can be smoothed to C∞ Lyapunov
functions retaining the homogeneity. Their proof used some rather advanced concepts in
differential geometry. In this paper we give a more elementary proof and, additionally, show that
our smooth Lyapunov function and its orbital derivatives approximate the original Lyapunov
function and its orbital derivatives arbitrary close and that the smoothing technique preserves
symmetry of the Lyapunov functions. These additional properties of the smooth Lyapunov
function are useful, for example, when studying numerical methods to compute Lyapunov
functions. Finally, our proof works for switched nonlinear systems, provided the individual
subsystems have globally Lipschitz continuous right-hand sides.
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1. INTRODUCTION

In Section III in the seminal paper Dayawansa and Martin
(1999) it was proved, amongst other things, that a locally
Lipschitz continuous, homogenous of order two Lyapunov
function V : Rn → R for a switched linear system can be
smoothed to a homogenous of order two Lyapunov func-
tion that is C∞ except at the origin. However, the proof
uses some quite advanced concepts of differential geometry,
like integration over the special orthogonal matrices SO(n)
using the Haar measure Haar (1933) and some details
are left out in the proof. Further, for some applications
it would be advantageous to have stronger statements
about the difference between the orbital derivatives of
the original locally Lipschitz Lyapunov function and the
smooth Lyapunov function constructed; such statements
were not needed for the application in Dayawansa and
Martin (1999).

In this paper, we deliver a more elementary proof and we
prove that our smooth Lyapunov function and its orbital
derivatives are arbitrary close to the original Lyapunov
function and its orbital derivatives. Further, we show
that our smoothing technique preserves symmetry of the
Lyapunov function, i.e. if V (x) = V (−x) for the original
Lipschitz continuous Lyapunov function, then the same
holds true for the smooth approximation. Finally, our
proof works for switched nonlinear systems, provided the
individual subsystems have globally Lipschitz continuous
right-hand sides.

We use quite elementary differential geometry in our proof,
all of which are covered in the classic book Analysis on
Manifolds Munkres (1991), and we work out the proof
in detail with citations to the relevant results in this
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book. Since we are interested in computational methods
for Lyapunov functions, that parameterize piecewise lin-
ear Lyapunov functions using linear programming, see
e.g. Polanski (1997); Della Rossa et al. (2020); Andersen
et al. (2023a,b); Hafstein (2023); Hafstein and Tanwani
(2023), we concentrate on Lyapunov functions that are
homogenous of order one, rather than of order two as in
Dayawansa and Martin (1999).

In the next section we describe the problem setting in more
detail and state the main results. In Section 3 we prove the
main result and in Section 4 we conclude the paper.

2. MAIN RESULTS

Let gi : Rn → Rn, gi(0) = 0, be globally Lipschitz
continuous functions for i = 1, 2, . . . , N . That is, there
exists a common Lipschitz constant G > 0 such that for
all x, y ∈ Rn we have

∥gi(x)− gi(y)∥ ≤ G∥x− y∥, i = 1, 2, . . . , N, (1)

where ∥ · ∥ denotes the Euclidian norm. We consider the
arbitrary switched system

ẋ = gσ(x), (2)

see, e.g., Davrazos and Koussoulas (2001); Liberzon
(2003); Sun and Ge (2011). This means that σ : [0,∞) →
{1, 2, . . . , N}, the switching signal, is an arbitrary right-
continuous function with only finitely many discontinuity
points on every compact interval. A solution x(t) to (2) is
obtained by gluing continuously together solution trajec-
tory segments of

xit := x+

∫ t

0

gi(x
i
τ )dτ for t ≥ 0. (3)

That is, with initial-value ξ ∈ Rn at time t0 = 0, we set
x(t) = xit−t0 in (3) with x = ξ and i = i0 := σ(t0) for
t0 ≤ t ≤ t1, where t1 > 0 is the first discontinuity point



of σ. On the interval [t1, t2], where t2 > t1 is the second
discontinuity point of σ, we set x(t) = xit−t1 in (3) with

x = xi0t1−t0 and i = i1 := σ(t1) for t1 ≤ t ≤ t2, etc.

We assume that the system (2) possesses a locally Lip-
schitz continuous Lyapunov function V : Rn → R, that
is homogenous of order one. In detail, that there exist
constants a, b, c > 0, such that for all x ∈ Rn we have

a∥x∥ ≤ V (x) ≤ b∥x∥, V (sx) = sV (x) for all s > 0,

and, with xih defined in (3),

lim sup
h→0+

V (xih)− V (x)

h
≤ −c∥x∥ (4)

for i = 1, 2, . . . , N and x ̸= 0.

Remark 1. Since V is locally Lipschitz and homogenous of
order one, it is indeed globally Lipschitz. To see this let
L > 0 be a Lipschitz constant for V on the closed unit ball
around zero. With x, y ∈ Rn, not both the zero vector, set
s := max{∥x∥, ∥y∥} > 0 and note that

|V (x)− V (y)| = s|V (x/s)− V (y/s)|
≤ sL∥x/s− y/s∥
≤ L∥x− y∥

and L is a global Lipschitz constant for V .

We will show, that given these assumptions, we have:

Theorem 1. For every ε > 0 there exists a Lyapunov
function Vε : Rn → R that is C∞ on Rn \{0}, homogenous
of order one, and such that

|Vε(x)− V (x)| ≤ ε∥x∥ (5)

for all x ∈ Rn and

∇Vε(x)gi(x) ≤ −(c− ε)∥x∥
for i = 1, 2, . . . , N and x ̸= 0.

Further, if V (x) = V (−x) for all x ∈ Rn, then Vε(x) =
Vε(−x) for all x ∈ Rn.

An obvious corollary is that

(a− ε)∥x∥ ≤ Vε(x) ≤ (b+ ε)∥x∥
for all x ∈ Rn and that

lim sup
h→0+

Vε(x
i
h)− Vε(x)

h
≤ −(c− ε)∥x∥

for i = 1, 2, . . . , N and x ̸= 0.

3. PROOF OF THE MAIN RESULTS

The idea of the proof is as follows: First we smooth out
V on the unit sphere Sn−1 := {x ∈ Rn : ∥x∥ = 1}
using a smooth mollifier. We do this using smooth, local,
coordinate patches ϕα from Uα ⊂ Sn−1 to Rn−1, i.e. a
smooth atlas {(Uα, ϕα)}α∈A for the manifold Sn−1. For
this atlas there exists a corresponding partition of unity
ψα : S

n−1 → [0, 1] with

supp(ψα) := {x ∈ Sn−1 : ψα(x) ̸= 0} ⊂ Uα.

For each Uα we so obtain a smooth approximation Vα of
V on an open set Uα ⊃ Eα,δ ⊃ supp(ψα). We then extend
the definition of each Vα to

cone(Eα,δ) := {tu ∈ Rn \ {0} : t > 0, u ∈ Eα,δ}
using the homogeneity property, call this functions Ṽα, and

show that Ṽα fulfills the properties of Theorem 1 on the

set cone(supp(ψα)). From this it then follows that Vε(x) :=∑
α∈A ψα(x/∥x∥)Ṽα(x) fulfills the promised properties of

Theorem 1 globally.

Atlas and partition of unity:
Following Chapter 2 in Lee (2013), let {(Uα, ϕα)}α∈A be
a smooth atlas for the manifold Sn−1 with the standard
smooth structure, see e.g. Examples 1.4 and 1.31 in Lee
(2013). Since Sn−1 is compact we may and will assume
that the atlas is finite, i.e. |A| < ∞. Let (ψα)α∈A be a
smooth partition of unity subordinate to the open cover
(Uα)α∈A of Sn−1. This implies that the smooth functions
ψα : S

n−1 → [0, 1], α ∈ A, fulfill supp(ψα) ⊂ Uα for all
α ∈ A and ∑

α∈A
ψα(x) = 1 for all x ∈ Sn−1.

In particular, for every x ∈ Sn−1 there is an α ∈ A such
that ψα(x) > 0 and supp(ψα) is a compact subset of the
open set Uα for every α ∈ A.

Remark 2. Let us compare our notation to the one used in
Munkres (1991). Our atlas {(Uα, ϕα)}α∈A corresponds to
the coordinate patches α in sec. 23. The only difference is
that we consider mappings ϕα from Sn−1 into Rn−1, and
not mappings α from Rn−1 to Rn, whose codomains cover
Sn−1. Hence, our ϕα correspond to the functions α−1 in
the first definition in sec. 23.

Our partition of unity subordinate to the open cover
(Uα)α∈A corresponds to the partition of unity ϕi : Rn → R
in Lemma 25.2 in Munkres (1991), dominated by the co-
ordinate patches (αi); our ψα are the restrictions ϕi

∣∣
Sn−1 .

In particular, we may assume that

ψα = ψα

∣∣
Sn−1 , where ψα ∈ C∞(Rn), (6)

for all α ∈ A.

Mollifier:
For every δ > 0 let ρδ : Rn → R be the smooth function

ρδ(x) =

Cδ exp

(
−1

1− (∥x∥/δ)2

)
, if ∥x∥ < δ,

0, otherwise,

where the constant Cδ is chosen such that for an x ∈ Sn−1∫
Sn−1

ρδ(x− y)dy = 1. (7)

Then supp(ρδ) = Bδ, where Bδ := {x ∈ Rn : ∥x∥ < δ} and
Bδ denotes the closure of Bδ, and because of rotational
symmetry (7) holds true for every x ∈ Sn−1.

Remark 3. Our function ρδ is obtained from the function
f(x) = e−1/x for x > 0 and f(x) = 0 if x ≤ 0 in Lemma
16.1 in Munkres (1991) through ρδ(x) := Cδf(1− (x/δ)2).

Remark 4. Recall that for every C1 diffeomorphism ϕ from
an open set U ⊂ Sn−1 to ϕ(U) ⊂ Rn−1 and any continuous
function f : Sn−1 → R with supp(f) ⊂ U , we have∫

Sn−1

f(y)dy :=

∫
ϕ(U)

f(ϕ−1(z))∆ϕ−1(z)dz, (8)

where

∆g(z) :=
√
det([Dg(z)]TDg(z)) for g ∈ C1 (9)

and Dg(z) denotes the Jacobian matrix of g at z and
[Dg(z)]T its transpose. This definition is independent of
the choice of the diffeomorphism ϕ; see e.g. sec. 25, in
particular Lemma 25.1, in Munkres (1991).



It easily follows, that for a C1 diffeomorphism ϕ from U
to ϕ(U) ⊂ Rn−1, where (x+Bδ) ∩ Sn−1 ⊂ U ⊂ Sn−1, we
have∫

Sn−1

ρδ(x− y)dy =

∫
ϕ((x+Bδ)∩Sn−1)

ρδ(x− ϕ−1(z))∆ϕ−1(z)dz.

Further, the definition (8) is applicable and independent
of the choice of the diffeomorphism as long as f ◦ ϕ−1

is Lebesgue integrable; see e.g. Theorem 19.4 in Bauer
(2001).

Fix δ > 0:
We will smooth out V on Sn−1 by using convolution with
the mollifier ρδ. Let L > 0 be a global Lipschitz constant
for V , see Remark 1, and define

δ := min

{
ε

L
,

ε

3LG+ c
,
1

2
min
α∈A

dist(Uα, supp(ψα))

}
,

(10)
where dist(A,B) := infx∈A,y∈B ∥x − y∥ for A,B ⊂ Rn.
Then, for every α ∈ A and every x ∈ supp(ψα), we have

(x+B2δ) ∩ Sn−1 ⊂ Uα,

from which, with

Eα,δ := {x ∈ Sn−1 : dist({x}, supp(ψα)) < δ},
it follows that

x ∈ Eα,δ implies (x+Bδ) ∩ Sn−1 ⊂ Uα. (11)

Smooth local approximations Vα to V on Sn−1:
We define smooth approximations Vα to V on Eα,δ. For
x ∈ Eα,δ define

φα,x : x− Eα,δ → ϕα(Eα,δ), φα,x(y) := ϕα(x− y),

i.e.

φ−1
α,x : ϕα(Eα,δ) → x− Eα,δ, φ−1

α,x(z) = x− ϕ−1
α (z).

Now define the functions Vα : Eα,δ → R through

Vα(x) :=

∫
ϕα(Eα,δ)

V ◦ ϕ−1
α (z)ρδ(x− ϕ−1

α (z))∆ϕ−1
α
(z)dz (12)

=

∫
ϕα(Eα,δ)

V (x− φ−1
α,x(z))ρδ ◦ φ−1

α,x(z)∆φ−1
α,x

(z)dz,

where we used that ∆ϕ−1
α
(z) = ∆φ−1

α,x
(z), which is easily

seen from formula (9). Note that, because of (11) and
Remark 4, that

x ∈ Eα,δ ∩ Eβ,δ implies Vα(x) = Vβ(x), (13)

and that for every x ∈ Eα,δ we have

|Vα(x)− V (x)| (14)

≤
∫

ϕα(Eα,δ)

|V (x− φ−1
α,x(z))− V (x)|ρδ ◦ φ−1

α,x(z)∆φ−1
α,x

(z)dz

≤
∫
ϕα(Eα,δ)

Lδ · ρδ ◦ φ−1
α,x(z)∆φ−1

α,x
(z)dz

= Lδ

∫
Sn−1

ρδ(x− y)dy ≤ ε

because δ ≤ ε/L by (10).

We now extend the definition domains of the Vα forcing

the homogenous property on Ṽα. Later we show that

the orbital derivatives of the Ṽα approximate the orbital

derivatives of V because both Ṽα and V are homogenous.

Smooth local approximations Ṽα to V on Rn:
With

ϕ̃α : cone(Uα) → Rn, ϕ̃α(x) :=
(
∥x∥, ϕα(x/∥x∥)

)
,

consider the atlas {(cone(Uα), ϕ̃α)}α∈A for the manifold

Rn \ {0}. We define the functions Ṽα : Rn → R through

Ṽα ◦ ϕ̃−1
α (t, u) = tVα(u) for (t, u) ∈ ϕ̃α(cone(Eα,δ)),

i.e.

Ṽα(x) := ∥x∥Vα(x/∥x∥) for x ∈ cone(Eα,δ), (15)

and we set Ṽα(x) = 0 otherwise.

That Ṽα is C∞ on cone(Eα,δ) is easily seen from the

definition of Ṽα and formula (12), i.e.

Ṽα(x) = ∥x∥
∫

ϕα(Eα,δ)

V ◦ ϕ−1
α (z)ρδ

(
x

∥x∥
− ϕ−1

α (z)

)
∆ϕ−1

α
(z)dz.

Because the integrand is continuous and compactly sup-
ported, it follows from Lebesgue’s dominated convergence
theorem that we can differentiate w.r.t. x under the in-
tegral, see e.g. Corollary 16.3 in Bauer (2001), and it is
straightforward to use induction to see that since ρδ is

C∞, so is Ṽα on cone(Eα,δ).

Orbital derivatives of Ṽα:
We now show that assumption (16), i.e.

lim sup
h→0+

V (xih)− V (x)

h
≤ −c∥x∥ (16)

for all x ∈ Rn \ {0} and i = 1, 2, . . . , N , implies

lim sup
h→0+

Ṽα(x
i
h)− Ṽα(x)

h
≤ −(c− ε)∥x∥ (17)

for every α ∈ A, x ∈ cone(supp(ψα)), and i = 1, 2, . . . , N .

Since Ṽα is C∞ on cone(Eα,δ) ⊃ cone(supp(ψα)), (17) is
equivalent to

∇Ṽα(xi)gi(x) ≤ −(c− ε)∥x∥. (18)

For the proof let α ∈ A, x ∈ cone(supp(ψα)), and
i ∈ {1, 2, . . . , N} be fixed, but arbitrary. Then there is
a δ∗ > 0 such that x + Bδ∗ ⊂ cone(Uα). Further, since
x ̸= 0, we have

0 < c∥x∥ ≤
∣∣∣∣lim sup

h→0+

V (xih)− V (x)

h

∣∣∣∣
≤ L

∣∣∣∣lim sup
h→0+

∥∥∥∥xih − x

h

∥∥∥∥∣∣∣∣ ≤ L∥gi(x)∥,

i.e. gi(x) ̸= 0. Let h∗ > 0 be so small that

xih ∈ cone(Eα,δ) and

∥∥∥∥xih − x

h

∥∥∥∥ ≤ 2∥gi(x)∥

for all 0 < h ≤ h∗. For such h we have



Ṽα(x
i
h)− Ṽα(x)

h
=

∥xih∥Vα
(

xi
h

∥xi
h
∥

)
− ∥x∥Vα

(
x

∥x∥

)
h

(19)

=
1

h

∫
ϕα(Eα,δ)

[
∥xih∥V

(
xih

∥xih∥
− φ−1

α,x(z)

)
− ∥x∥V

(
x

∥x∥
− φ−1

α,x(z)

)]
ρε ◦ φ−1

α,x(z)∆φ−1
α,x

(z)dz

=

∫
ϕα(Eα,δ)

1

h

[
∥xih∥V

(
xih
∥xih∥

− φ−1
α,x(z)

)
− ∥x∥V

(
xih
∥x∥

− φ−1
α,x(z)

)]
ρε ◦ φ−1

α,x(z)∆φ−1
α,x

(z)dz

+

∫
ϕα(Eα,δ)

∥x∥
h

[
V

(
xih
∥x∥

− φ−1
α,x(z)

)
− V

(
x

∥x∥
− φ−1

α,x(z)

)]
ρε ◦ φ−1

α,x(z)∆φ−1
α,x

(z)dz.

We now show that the absolute values of the integrands in
both integrals on the right-hand-side of (19) are dominated
by integrable functions. Hence, we can use Fatou’s lemma,
i.e. with g and fn integrable, |fn| ≤ g for n ∈ N, we have∫

lim inf
n→∞

(g − fn) ≤ lim inf
n→∞

∫
(g − fn),

i.e.

lim sup
n→∞

∫
fn ≤

∫
lim sup
n→∞

fn

because lim supn→∞ fn = − lim infn→∞(−fn); see e.g.
Lemma 15.2 in Bauer (2001).

For the integrand of the first integral we have with y =
φ−1
α,x(z) that ∥y∥ < δ and with G > 0 from (1) we get

1

h

∣∣∣∣∥xih∥V ( xih
∥xih∥

− y

)
− ∥x∥V

(
xih
∥x∥

− y

)∣∣∣∣ (20)

=
1

h

∣∣V (xih − ∥xih∥y
)
− V

(
xih − ∥x∥y

)∣∣
≤ L

h

∥∥(∥x∥ − ∥xih∥)y
∥∥

≤ L

∥∥∥∥xih − x

h

∥∥∥∥ ∥y∥
≤ 2L∥gi(x)∥δ
≤ 2LGδ∥x∥.

By the estimate (20) we additionally see that the absolute
value of the limes superior of the first integral on the
right-hand-side of (19) is upper bounded by 2LGδ∥x∥ as
h→ 0+.

For the integrand of the second integral we get

∥x∥
h

∣∣∣∣V ( xih
∥x∥

− y

)
− V

(
x

∥x∥
− y

)∣∣∣∣ (21)

=
1

h

∣∣V (xih − ∥x∥y
)
− V (x− ∥x∥y)

∣∣
≤ L

h

∥∥xih − x
∥∥

≤ 2L∥gi(x)∥.

Together (20) and (21) establish that we can use Fatou’s
lemma and as h→ 0+ the limes superior of the left-hand-
side of (19) is upper bounded by the integrals of the limes
superior of the integrands on the right-hand-side.

We have already seen that the first integral in (19) is upper
bounded by 2LGδ∥x∥ as h→ 0+. For the second integral,
first note that

∥x∥
h

[
V

(
xih
∥x∥

− y

)
− V

(
x

∥x∥
− y

)]
(22)

=
V
(
xih − ∥x∥y

)
− V

(
[x− ∥x∥y]ih

)
h

+
V
(
[x− ∥x∥y]ih

)
− V (x− ∥x∥y)
h

,

where [x−∥x∥y]ih is the trajectory (3) for the initial vector
x−∥x∥y. For the first term on the right-hand-side of (22),
we have the upper bound∣∣∣∣∣V

(
xih − ∥x∥y

)
− V

(
[x− ∥x∥y]ih

)
h

∣∣∣∣∣
≤ L

∥∥∥∥xih − ∥x∥y − [x− ∥x∥y]ih
h

∥∥∥∥
≤ L

∥∥∥∥xih − x

h
− [x− ∥x∥y]ih − (x− ∥x∥y)

h

∥∥∥∥
and therefore

lim sup
h→0+

∣∣∣∣∣V
(
xih − ∥x∥y

)
− V

(
[x− ∥x∥y]ih

)
h

∣∣∣∣∣
≤ L ∥gi(x)− gi(x− ∥x∥y)∥
≤ LG∥x∥∥y∥
≤ LGδ∥x∥.

For the second term on the right-hand-side of (22) we have
by the assumption (16), that

lim sup
h→0+

V
(
[x− ∥x∥y]ih

)
− V (x− ∥x∥y)
h

≤ −c
∥∥x− ∥x∥y

∥∥
≤ −c

(
∥x∥ −

∥∥∥x∥y∥∥) ≤ −c∥x∥+ δc∥x∥.
Hence, putting the pieces together, delivers

lim sup
h→0+

Ṽα(x
i
h)− Ṽα(x)

h
≤ 3LGδ∥x∥ − c∥x∥+ δc∥x∥

≤ −(c− ε)∥x∥,
because (3LG + c)δ ≤ ε by (10). Since α ∈ A, x ∈
cone(supp(ψα)), and i ∈ {1, 2, . . . , N} were arbitrary, we
have shown (17).

The function Vε and its properties:
We define the function Vε : Rn → R by

Vε(x) =
∑
α∈A

ψ̃α(x)Ṽα(x),

where

ψ̃α(x) :=

{
ψα(x/∥x∥), for x ∈ Rn \ {0},
0, for x = 0.

We now show all the properties of Vε stated in Theorem 1
1) Vε ∈ C∞(Rn \ {0}):
Note that for every α ∈ A the function ψ̃α = ψα ◦ g,



g(x) = x/∥x∥, is the composition of C∞ functions, see

(6), and is therefore C∞ on Rn \{0}. Further, supp(ψ̃α) =

cone(supp(ψα)) ∪ {0}. Since Ṽα is C∞ on the open set
cone(Eα,δ) ⊃ cone(supp(ψα)), i.e. x /∈ cone(Eα,δ) implies

x = 0 or x ∈ Rn \ supp(ψ̃α), the function x 7→ ψ̃α(x)Ṽα(x)
is C∞ on Rn \ {0}. Hence, Vε is C∞ on Rn \ {0}.
2) ∇Vε(x)gi(x) ≤ −(c− ε)∥x∥:
For any j ∈ {1, 2, . . . , n} and for every x ̸= 0 we have, with

Ax := {α ∈ A : x ∈ supp(ψ̃α)},
that

∂Vε
∂xj

(x) =
∑

α∈Ax

[
∂ψ̃α

∂xj
(x)Ṽα(x) + ψ̃α(x)

∂Ṽα
∂xj

(x)

]

=
∑

α∈Ax

ψ̃α(x)
∂Ṽα
∂xj

(x)

because α, β ∈ Ax implies Ṽα(x) = Ṽβ(x), see (13) and
(15), and for a particular β ∈ Ax we have∑

α∈Ax

∂ψ̃α

∂xj
(x)Ṽα(x) = Ṽβ(x)

∂

∂xj

( ∑
α∈Ax

ψ̃α(x)

)
︸ ︷︷ ︸

=1

= 0.

Hence, from (18) it follows for every x ̸= 0 and i =
1, 2, . . . , N , that

∇Vε(x)gi(x) =
∑

α∈Ax

ψ̃α(x)∇Ṽα(x)gi(x)

≤
∑

α∈Ax

ψ̃α(x)[−(c− ε)∥x∥]

≤ −(c− ε)∥x∥.
3) Homogeneity of Vε:
For x ∈ Rn \ {0}, s > 0, and β ∈ Ax, we have by (15) that

Vε(sx) = Ṽβ(sx)
∑

α∈Ax

ψ̃α(sx)

= ∥sx∥Vβ
(

sx

∥sx∥

) ∑
α∈Ax

ψ̃α(sx)

= s∥x∥Vβ
(

x

∥x∥

) ∑
α∈Ax

ψ̃α(x)

= s
∑

α∈Ax

ψ̃α(x)Ṽα(x)

= sVε(x).

Hence, Vε is homogenous of order one.

4) |Vε(x)− V (x)| ≤ ε∥x∥:
For x = 0 the estimate is clear and for x ∈ Rn \ {0} we
have by (15) and (14), that

|Vε(x)− V (x)| =
∑
α∈A

ψ̃α(x)|Ṽα(x)− V (x)|

=
∑
α∈A

ψα

(
x

∥x∥

)
∥x∥

∣∣∣∣Ṽα( x

∥x∥

)
− V

(
x

∥x∥

)∣∣∣∣
≤ ε∥x∥.

5) V (x) = V (−x) ⇒ Vε(x) = Vε(−x):
Now assume that V (x) = V (−x) for all x ∈ Rn. Because
Sn−1 = −Sn−1 and ρδ(z) = ρδ(−z) for all z ∈ Rn, this
follows from

Vε(x) =

∫
Sn−1

V (y)ρδ(x− y)dy =

∫
Sn−1

V (−z)ρδ(x+ z)dz

=

∫
Sn−1

V (z)ρδ(−x− z)dz = Vε(−x)

using the coordinate transform y = −z. In more detail, let
α, β ∈ A be such that

x/∥x∥ ∈ supp(ψα) and − x/∥ − x∥ ∈ supp(ψβ)

and define

[ϕ−α ] : − Uα → ϕα(Uα), [ϕ−α ](y) = ϕα(−y),
i.e. [ϕ−α ]

−1(z) = −ϕ−1
α (z). From the formula (9) we see

that ∆[ϕ−
α ]−1(z) = ∆ϕ−1

α
(z) and

Vα(x) =

∫
ϕα(Eα,δ)

V ◦ ϕ−1
α (z)ρδ(x− ϕ−1

α (z))∆ϕ−1
α
(z)dz

=

∫
ϕα(Eα,δ)

V ◦ [ϕ−α ]−1(z)ρδ(x+ [ϕ−α ]
−1(z))∆[ϕ−

α ]−1(z)dz

=

∫
ϕα(Eα,δ)

V ◦ [ϕ−α ]−1(z)ρδ(−x− [ϕ−α ]
−1(z))∆[ϕ−

α ]−1(z)dz

=

∫
ϕβ(Eα,δ)

V ◦ ϕ−1
β (z)ρδ(x− ϕ−1

β (z))∆ϕ−1
β
(z)dz

= Vβ(−x)
by Remark 4 and from (13) it follows that

Vε(x) = Ṽα(x)
∑
α′∈A

ψ̃α′(x)

= Ṽβ(−x)
∑
β′∈A

ψ̃β′(x)

= Vε(−x).

4. CONCLUSIONS

We proved, using elementary differential geometry, that
the existence of a locally Lipschitz continuous, homoge-
nous of order one Lyapunov function V : Rn → R for a
switched system ẋ = gσ(x), σ : [0,∞) → {1, 2, . . . , N}
and the gi are globally Lipschitz continuous, implies the
existence of a smooth, except at the origin, homogenous of
order one Lyapunov function Vε for the system. Further,
we established that Vε can approximate V and its orbital
derivatives arbitrary close; this is important when study-
ing numerical methods to compute Lyapunov functions.
Finally, we showed that our smoothing procedure preserves
symmetry of the Lyapunov function.
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