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Abstract: Dayawansa and Martin proved in 1999 that locally Lipschitz continuous and
homogenous Lyapunov functions for a switched linear systems can be smoothed to C'*° Lyapunov
functions retaining the homogeneity. Their proof used some rather advanced concepts in
differential geometry. In this paper we give a more elementary proof and, additionally, show that
our smooth Lyapunov function and its orbital derivatives approximate the original Lyapunov
function and its orbital derivatives arbitrary close and that the smoothing technique preserves
symmetry of the Lyapunov functions. These additional properties of the smooth Lyapunov
function are useful, for example, when studying numerical methods to compute Lyapunov
functions. Finally, our proof works for switched nonlinear systems, provided the individual
subsystems have globally Lipschitz continuous right-hand sides.
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1. INTRODUCTION

In Section IIT in the seminal paper Dayawansa and Martin
(1999) it was proved, amongst other things, that a locally
Lipschitz continuous, homogenous of order two Lyapunov
function V: R™ — R for a switched linear system can be
smoothed to a homogenous of order two Lyapunov func-
tion that is C'*° except at the origin. However, the proof
uses some quite advanced concepts of differential geometry,
like integration over the special orthogonal matrices SO(n)
using the Haar measure Haar (1933) and some details
are left out in the proof. Further, for some applications
it would be advantageous to have stronger statements
about the difference between the orbital derivatives of
the original locally Lipschitz Lyapunov function and the
smooth Lyapunov function constructed; such statements
were not needed for the application in Dayawansa and
Martin (1999).

In this paper, we deliver a more elementary proof and we
prove that our smooth Lyapunov function and its orbital
derivatives are arbitrary close to the original Lyapunov
function and its orbital derivatives. Further, we show
that our smoothing technique preserves symmetry of the
Lyapunov function, i.e. if V(z) = V(—z) for the original
Lipschitz continuous Lyapunov function, then the same
holds true for the smooth approximation. Finally, our
proof works for switched nonlinear systems, provided the
individual subsystems have globally Lipschitz continuous
right-hand sides.

We use quite elementary differential geometry in our proof,
all of which are covered in the classic book Analysis on
Manifolds Munkres (1991), and we work out the proof
in detail with citations to the relevant results in this
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book. Since we are interested in computational methods
for Lyapunov functions, that parameterize piecewise lin-
ear Lyapunov functions using linear programming, see
e.g. Polanski (1997); Della Rossa et al. (2020); Andersen
et al. (2023a,b); Hafstein (2023); Hafstein and Tanwani
(2023), we concentrate on Lyapunov functions that are
homogenous of order one, rather than of order two as in
Dayawansa and Martin (1999).

In the next section we describe the problem setting in more
detail and state the main results. In Section 3 we prove the
main result and in Section 4 we conclude the paper.

2. MAIN RESULTS

Let g;: R — R", ¢;(0) = 0, be globally Lipschitz
continuous functions for ¢+ = 1,2,...,N. That is, there
exists a common Lipschitz constant G > 0 such that for
all z,y € R™ we have

lgi(z) — g < Gllz —yll, i=12,...,N, (1)

where || - || denotes the Euclidian norm. We consider the
arbitrary switched system
T = go(v), (2)

see, e.g., Davrazos and Koussoulas (2001); Liberzon
(2003); Sun and Ge (2011). This means that o: [0,00) —
{1,2,..., N}, the switching signal, is an arbitrary right-
continuous function with only finitely many discontinuity
points on every compact interval. A solution z(¢) to (2) is
obtained by gluing continuously together solution trajec-
tory segments of

t
rl=1x —|—/ gi(z)dr for t > 0. (3)

0
That is, with initial-value £ € R™ at time tg = 0, we set

x(t) = xj_,, in (3) with 2 = £ and i = iy := o(to) for
to <t < ty, where t; > 0 is the first discontinuity point



of 0. On the interval [t1,?,], where ty > t; is the second
discontinuity point of o, we set z(t) = x}_; in (3) with
r=x._, and i =iy :=o(t;) for t; <t <1, etc.

We assume that the system (2) possesses a locally Lip-
schitz continuous Lyapunov function V: R"™ — R, that

is homogenous of order one. In detail, that there exist
constants a, b, ¢ > 0, such that for all x € R™ we have

allzl] < V(x) <blz|l, V(sx)=sV(z) forall s> 0,
and, with z} defined in (3),

Jim sup - @h) = V(@)
h—0+ h
fori=1,2,...,N and = # 0.
Remark 1. Since V is locally Lipschitz and homogenous of
order one, it is indeed globally Lipschitz. To see this let
L > 0 be a Lipschitz constant for V' on the closed unit ball
around zero. With =,y € R™, not both the zero vector, set
s := max{||z|, |lyl|} > 0 and note that

V(z) = V(y)l = slV(z/s) = V(y/s)|
<sLlz/s —y/s|
< Lilz -yl
and L is a global Lipschitz constant for V.

< —cflz| (4)

We will show, that given these assumptions, we have:

Theorem 1. For every € > 0 there exists a Lyapunov
function V.: R™ — R that is C°° on R™\ {0}, homogenous
of order one, and such that

[Ve(z) = V()| < el ()

for all x € R™ and
VVe(x)gi(z) < —(c =)z
fori=1,2,...,N and = # 0.
Further, if V(z) = V(—z) for all z € R"™, then V.(z) =
Ve(—z) for all z € R™.
An obvious corollary is that
(@ —e)flzll < Ve(x) < (b+e)llz|

for all x € R™ and that
Ve(ay,) — V()

lim sup — < —(c—9)|z|l
h—0+ h
fori=1,2,...,N and = # 0.

3. PROOF OF THE MAIN RESULTS

The idea of the proof is as follows: First we smooth out
V on the unit sphere S"~! = {z € R": ||z|| = 1}
using a smooth mollifier. We do this using smooth, local,
coordinate patches ¢, from U, C S™7! to R, ie. a
smooth atlas {(Uy, da)}aca for the manifold S"~1. For
this atlas there exists a corresponding partition of unity
o 8P —[0,1] with

supp(¢q) :={z € S~ 1: ¢, (z) # 0} C U,.
For each U, we so obtain a smooth approximation V, of
V on an open set Uy D Eq 5 O supp(ta). We then extend
the definition of each V,, to

cone(Eq ) :={tu e R"\ {0}: ¢t >0, u € Ey 5}

using the homogeneity property, call this functions \7;, and

show that V,, fulfills the properties of Theorem 1 on the

set cone(supp(?y)). From this it then follows that V.(z) :=

Y owed Vo (/|| z]|) Vi () fulfills the promised properties of
Theorem 1 globally.

Atlas and partition of unity:
Following Chapter 2 in Lee (2013), let {(Uq, ¢a)}aca be
a smooth atlas for the manifold S”~! with the standard
smooth structure, see e.g. Examples 1.4 and 1.31 in Lee
(2013). Since S™~! is compact we may and will assume
that the atlas is finite, i.e. |A] < oco. Let (¢o)aca be a
smooth partition of unity subordinate to the open cover
(Us)aea of S*~1. This implies that the smooth functions
ot S = [0,1], @ € A, fulfill supp(v,) C U, for all
a e Aand

> alz)=1 forallze st

acA
In particular, for every z € S"~! there is an o € A such
that ¥, (x) > 0 and supp(¢,) is a compact subset of the
open set U, for every o € A.

Remark 2. Let us compare our notation to the one used in
Munkres (1991). Our atlas {(Uq, ¢o)}aca corresponds to
the coordinate patches « in sec. 23. The only difference is
that we consider mappings ¢, from S”~! into R"~!, and
not mappings « from R”~! to R”, whose codomains cover
Sn~1 Hence, our ¢, correspond to the functions ! in

the first definition in sec. 23.

Our partition of unity subordinate to the open cover
(Ua) e corresponds to the partition of unity ¢;: R® — R
in Lemma 25.2 in Munkres (1991), dominated by the co-
ordinate patches («;); our v, are the restrictions @‘ gn-1-
In particular, we may assume that

Yo = 1/)Ot|sn71, where ¢, € C*(R"), (6)
for all a € A.

Mollifier:
For every 6 > 0 let ps: R™ — R be the smooth function

Cs exp (1 - <x||/6>2) A flall <,

otherwise,

ps(z) =

where the constant Cj is chosen such that for an z € S*~!

/ ps(z —y)dy = 1. (7)
S’n,—l

Then supp(ps) = Bs, where Bs := {x € R": ||z|| < §} and
Bj denotes the closure of B, and because of rotational
symmetry (7) holds true for every oz € S"~1.

Remark 3. Our function ps is obtained from the function
f(z) =e /% for £ > 0 and f(z) = 0 if x < 0 in Lemma
16.1 in Munkres (1991) through ps(z) := Csf(1 — (2/6)?).
Remark 4. Recall that for every C'' diffeomorphism ¢ from
an open set U C S"~! to ¢(U) € R"~! and any continuous
function f: S"~! — R with supp(f) C U, we have

/ f(y)dyr:/ (071 (2)Ag-1(2)dz,  (8)
gne H(U)
where

Ay(2) = \/det([Dg(=)|TDg(2)) for g€ C  (9)

and Dg(z) denotes the Jacobian matrix of g at z and
[Dg(z)]T its transpose. This definition is independent of
the choice of the diffeomorphism ¢; see e.g. sec. 25, in
particular Lemma 25.1, in Munkres (1991).




It easily follows, that for a C' diffeomorphism ¢ from U
to ¢(U) C R™ !, where (x+ Bs)N Sl cUc 81 we

have
| mta=widy= [osta—o
#((z+Bs)NSn—1)

Further, the definition (8) is applicable and independent
of the choice of the diffeomorphism as long as f o ¢!
is Lebesgue integrable; see e.g. Theorem 19.4 in Bauer
(2001).

Y(2))Ag-1(2)dz.

Fix § > 0:

We will smooth out V on S"~! by using convolution with
the mollifier ps. Let L > 0 be a global Lipschitz constant
for V', see Remark 1, and define

1
0= min{L 3LC§—|— 3 Ortnemdlst(Umsupp(z/Ja))} ,
(10)
where dist(A, B) := infycayep ||z — y| for A,B C R™.
Then, for every a € A and every = € supp(¢,), we have
(x4 Bas) N S™ C Uy,
from which, with
Eos = {z € 5" dist({z},supp(va)) < 0},
it follows that

r € E,s implies (z+ Bs)NS™! C U,. (11)

Smooth local approximations V,, to V on S"~!:
We define smooth approximations V, to V on E, 5. For
x € Fq 5 define

Lo,z T — Ea,5 — (ba(Eoz,é)»
ie.

Poi’ a(Bas) = T = Eas, ¢au(2)=1—0"(2).
Now define the functions V,,: E, s — R through

ba,z(y) == dalz — ),

Vala)i= [ Voo (st = 63 (DA ()2 (12)
$a(Ea,s)
= [ Vi - e @so ek 9A, 1 ()
$a(Ea,s)
where we used that A —i(2) = A oot (2 (z), which is easily
seen from formula (9) “Note that, because of (11) and
Remark 4, that
x € EqsNEgs implies Vy(z) = Va(x), (13)
and that for every x € E, ; we have
Va(z) = V(z)| (14)
<[ V= eab ) - V@los o ik (A, 1 ()i
$a(Ea,s)

< / L3+ pso pak(2)A, 1 ()dz
bo(Ba,s) o

= L5/ ps(x —y)dy < e
Sn—1
because 6 < /L by (10).

We now extend the definition domains of the V, forcing
the homogenous property on V,. Later we show that
the orbital derivatives of the V,, approximate the orbital

derivatives of V' because both V,, and V' are homogenous.

Smooth local approximations Va to V on R":
With

$o: cone(Uy) — R™,

ba(@) = (2], @a(/l2]),

consider the atlas {(cone(U,), da)}taca for the manifold
R™\ {0}. We define the functions V,,: R" — R through

Va © 5;1(@

i.e.

u) =tVy(u) for (t,u) € 5a(cone(Ea,5)),

?a(x) = ||z||Va(z/||z]]) for z € cone(E,,s), (15)

and we set Vo (z) = 0 otherwise.

That V, is C™® on cone(E, ;) is easily seen from the
definition of V, and formula (12

—lall [ Vo6 2o

¢a(Ea,5)

), i.e.
<||ZEj a ¢;1(’z)> Ay (2)dz.

Because the integrand is continuous and compactly sup-
ported, it follows from Lebesgue’s dominated convergence
theorem that we can differentiate w.r.t.  under the in-
tegral, see e.g. Corollary 16.3 in Bauer (2001), and it is
straightforward to use induction to see that since ps is

C®, s0 is V, on cone(Ey s).

Orbital derivatives of ‘N/a:
We now show that assumption (16), i.e

V(z}) = V(z)

lim sup < —c||z| (16)
h—0+ h
for all z € R™\ {0} and ¢ = 1,2,..., N, implies
Va(zi) =V,
lim sup (zh) (z) < —(e=9)|z| (17)
h—0+ h

for every « € A, z € cone(supp(¢,)), and ¢ = 1,2,..., N.
Since V, is C™ on cone(Eq,,s) D cone(supp(¥y)), (17) is
equivalent to

VValzi)gi(x) < —(c—e)llz]. (18)
For the proof let @« € A, x € cone(supp(v,)), and
i € {1,2,...,N} be fixed, but arbitrary. Then there is
a 0* > 0 such that z + Bs- C cone(U,). Further, since
x # 0, we have

Vizi) -V
0<clz| < limsupw
< L |limsup H‘ < Llgi(x)],
h—0+

i.e. g;(x) # 0. Let h* > 0 be so small that

)

Ty, —T

) € cone(F,5) and ’ < 2gi(z)]]

for all 0 < h < h*. For such h we have



Palad) = Tatw) _ IoIY% (ghy) ~lelVe () o

h T h
1/ { x

_! I |V( Z
hilgugas L [EAA

=)

el (5 = pa(a)) | e o waiaa s (el

1 ) t
_ ai v (? - somz))
/¢>Q(EM> h{ g (| ’

l’i _ _
v <||xh|| - soa,zcz)) ]ps ok (2)Ao 1 (2)dz

||a:||[ <xz »
4 / L 0 (s S
sman B L \Jaf] ~ %o

<|| [ Paule ))]PsoSﬁa,lx(Z)A%}I(z)dz.

We now show that the absolute values of the integrands in
both integrals on the right-hand-side of (19) are dominated
by integrable functions. Hence, we can use Fatou’s lemma,
i.e. with g and f,, integrable, |f,| < g for n € N, we have

/hmlnf(g fa) < hmlnf/(g— fn)s

n— oo

limsup/fn < /limsupfn

n—oo n—oo

because limsup,,_, . fn = —lminf, ,o(—f); see e.g.
Lemma 15.2 in Bauer (2001).

ie.

For the integrand of the first integral we have with y =
w;’a(z) that |ly|| < ¢ and with G > 0 from ( ) we get

b |V - - Vv 20
Al "” (nxzn ) Il ( 2 )‘ (20)
= 2|V (&~ llehlly) ~ V (xh — lely)
L )
< E) (el - ilyol
<L
< 2Lg:(@)]18
< 2LG3|z].

By the estimate (20) we additionally see that the absolute
value of the limes superior of the first integral on the
right-hand-side of (19) is upper bounded by 2LG¢||x| as
h — 0+.

For the integrand of the second integral we get

Il |, ( = v
Vl(”xn y) V(nxn y)‘ 2y
= |V (@} — lelly) = V (= — |lally)|
<Lt - a
h
<2L||gi(z)]l-

Together (20) and (21) establish that we can use Fatou’s
lemma and as h — 0+ the limes superior of the left-hand-
side of (19) is upper bounded by the integrals of the limes
superior of the integrands on the right-hand-side.

We have already seen that the first integral in (19) is upper
bounded by 2LG6||z|| as h — 0+. For the second integral,
first note that

Bl fy (o ) (2
h Mnm )= (i y)] -
_ V(zh = lelly) =V (= = llzllylh)
h
VA= ) =V = el

where [z — ||z||y]}, is the trajectory (3) for the initial vector
x — ||z||ly. For the first term on the right-hand-side of (22),
we have the upper bound

V (), — ll=lly) =V ([z — [lz]ly]})
h
- L‘ wj, = llzlly — [= — [yl
- h
< ||Fimz o=yl — (@~ [l2lly)
- h h
and therefore
g | V.0 = 1) = V (12 = )
h—0+ h
< Lllgi(z) — gi(z — [|=|y)|l
< LG||z|[|lyll
< LGO ||z

For the second term on the right-hand-side of (22) we have
by the assumption (16), that

: V([ —ll=llyli) =V (= —ll=lly) _
lim sup ( h)h cHsc ||mHyH
h—0+
< —c(lzll = [llzlly]l) < —ecllzll + dcll]-
Hence, putting the pieces together, delivers
tim sup L&) =Va®) g5 oo + ez
h—0+ h

< —(c—e)ll=l,
because (3LG + ¢)d < € by (10). Since a € A, = €

cone(supp(¢,)), and ¢ € {1,2,..., N} were arbitrary, we
have shown (17).

The function V. and its properties:
We define the function V.: R™ — R by

= Z @Za(x)V T

acA
where

for x = 0.

Vo(z) = { B/ia(fv/Hxll), for z € R\ {0},

We now show all the properties of V. stated in Theorem 1
1)V € C% (R {0}): o
Note that for every @ € A the function ¢, = v, o g,



g(x) = z/||z||, is the composition of C* functions, see
(6), and is therefore C* on ]R”~\ {0}. Further, supp(¢,) =
cone(supp(¢,)) U {0}. Since V, is C* on the open set
cone(FEq 5) D cone(supp(¥y)), i.e. © ¢ cone(Fy,,s) implies
x =0orx € R"\supp(¢,), the function x — 1, (z)V,(z)
is C*° on R™ \ {0}. Hence, V; is C* on R™ \ {0}.

2) VVa(z)gi(x) < —(c —e)llz|:

For any j € {1,2,...,n} and for every = # 0 we have, with

A, = {a ceA:ze Supp('l;oz)}’

that
ov. O, = OV
5= L Lw Wala) +Ja(z) 5, (@)
= Y P ()
aEA, J

because a, 3 € A, implies V,(z) = Vz(z), see (13) and
(15), and for a particular 8 € A, we have

S et = T (Zwa )

aEAz OéeAm

=1
Hence, from (18) it follows for every = # 0 and i

1,2,..., N, that
VV.(x = Y bal@)VVal(@)gi(2)
acA,
< Y Gal)l~(c— el
acA,
< —(c—e)ll=ll.

3) Homogeneity of Vy:
For z € R"\ {0}, s > 0, and 8 € A,, we have by (15) that

Ve(sz) = Vg(sx) Z @a(sx)

acA,

= sy (57) 3 Feten

= s[|z(|V bala
‘*(n ll);
=5 Y Val@)Val(x)

aEA,
= sV.(x).
Hence, V. is homogenous of order one.
4) [Ve(z) = V(z)| < ellz]:
For x = 0 the estimate is clear and for z € R"™ \ {0} we
have by (15) and (14) that

Va(@) = V(@) = D dale V()]
acA
- %( )i ( ) ()
20\ E E

<ellz|.
5) V(x) = V(=) = V() = Ve(—2):
Now assume that V(z) = V(—z) for all x € R™. Because
Sl = —Sn=1 and ps(z) = ps(—=2) for all z € R", this

follows from

Via) = [ Viosta =iy = [ V(-2ps(a+2)a:
= | Vst =)z = Vil=)

using the coordinate transform y = —z. In more detail, let
a, B € A be such that

z/||z|| € supp(¥a) and —z/| — | € supp(vs)
and define

[ ] Uoz — ¢a(Ua)7 [¢;](y) = ¢a(_y)v
e. [o5] (z) = —¢,1(2). From the formula (9) we see
that A ~1(2) = Ay-1(2) and
Valz) = / Vo 6 ()ps(w — 63 (2) Ay (2)d2
¢a(Ea,s)
= [ Vols) M Ene + 6] @) Ay - ()
¢a(Ea,s)
= [ Vols) @ 53] ) Ay o (2
ba(Ea,s)

:/ Vo szt (ol — 05 (2)8, 1 (2)d
¢5(Ea,s)
= Vs(—x)
by Remark 4 and from (13) it follows that

) Z Ja’(x)

a’eA

—z) Y Vg (x)

peA
=V.(—2).

4. CONCLUSIONS

We proved, using elementary differential geometry, that
the existence of a locally Lipschitz continuous, homoge-
nous of order one Lyapunov function V: R" — R for a
switched system & = g¢,(z), o: [0,00) — {1,2,...,N}
and the g; are globally Lipschitz continuous, implies the
existence of a smooth, except at the origin, homogenous of
order one Lyapunov function V. for the system. Further,
we established that V. can approximate V' and its orbital
derivatives arbitrary close; this is important when study-
ing numerical methods to compute Lyapunov functions.
Finally, we showed that our smoothing procedure preserves
symmetry of the Lyapunov function.
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