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Abstract. We develop an algorithm to parameterize continuous and piece-
wise quadratic (CPQ) Lyapunov functions for stochastic differential equations

(SDEs) using linear programming (LP). The algorithm is a non-trivial ex-

tension of algorithms to parameterize continuous and piecewise linear (CPA)
Lyapunov functions for ordinary differential equations (ODEs), but since the

conditions for a Lyapunov function for a stochastic system involve second order

derivatives, CPA Lyapunov functions cannot exist for stochastic systems and
hence CPQ Lyapunov functions are needed. We demonstrate our algorithm on

two examples from the literature.

1. Introduction. Continuous piecewise affine (CPA) functions have been widely
used as a method to approximate functions of interest, such as in the computation
of Lyapunov functions for autonomous dynamical systems, see [12]. Since the con-
ditions for a Lyapunov function for stochastic differential equations (SDEs) involve
the infinitesimal generator for the SDE, they include second-order derivatives of
the Lyapunov functions, and therefore such a function cannot be piecewise linear.
In general, the computation of Lyapunov functions for SDEs is considerably more
difficult than for ODEs, see, e.g. [8, 14].

In this paper we develop an algorithm that uses linear programming (LP) to com-
pute continuous piecewise quadratic (CPQ) Lyapunov functions for SDEs. More
exactly, from a feasible solution to the LP problem, a CPQ function can be pa-
rameterized and this CPQ function can be mollified to a smooth function, which
is a non-local Lyapunov function for the SDE in question, see Theorem 3.4. The
mollification can be be done such that the level-sets of the parameterized CPQ func-
tion and the smooth non-local Lyapunov function are arbitrarily close. Since the
level-sets are the interesting part of a non-local Lyapunov function, we will simply
refer to the CPQ function with these properties as a non-local Lyapunov function.
Note that the mollification of a piecewise linear function, i.e. a CPA function, would
deliver a function whose second-order derivative is zero, except at the boundaries
of the areas where the original function is linear. Hence, it is not suited to assert
stability for an SDE.
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Note that the stability of equilibria for SDEs is a very difficult problem. In the lit-
erature, to the best of the authors’ knowledge, this problem has only been addressed
analytically for particular systems with a simple structure and often the analysis is
reduced to verifying mean-square exponential stability, see e.g. [21, 25, 27, 29, 31].
For general nonlinear systems Lyapunov functions have been computed by solving
the corresponding stochastic Zubov PDE numerically with [5, 7] or without [14]
subsequent verification. For linear SDEs with constant coefficients the problem of
computing a Lyapunov function assuring mean-square exponential stability is not
too difficult; in general a linear matrix inequality (LMI) approach can be used, see
e.g. [3], and in two dimensions there is even an analytical solution [32]. For com-
puting Lyapunov functions to assert the more general global asymptotic stability
for linear SDEs with constant coefficients, one can formulate the conditions for a
Lyapunov function as bilinear matrix inequalities (BMIs) [3, 4, 16], which can often
be solved using heuristics, see e.g. [23, 24].

In this paper we will discuss and review the necessary theory for our algorithm.
In particular, in Section 2 we thoroughly discuss our parameterization of CPQ
functions, their relation to CPA functions, and derive formulas for their gradient
and Hessian in a form that is suited for our LP problem. Section 3 contains the main
results of the paper. We first discuss SDEs as well as local- and non-local Lyapunov
functions for them, before we derive conditions for a CPQ function to be a non-local
Lyapunov function. In Theorem 3.4 we then prove the claimed properties above
about the mollification of the CPQ non-local Lyapunov function. We conclude
Section 3 by stating our linear programming problem in LP Problem 3.5 and prove
that a feasible solution to it parameterizes a CPQ non-local Lyapunov function for
the system in question. In Section 4 we compute CPQ Lyapunov functions for two
examples from the literature and then we conclude the paper in Section 5.

2. Continuous Piecewise Quadratic (CPQ) Functions. For a given triangu-
lation T , the set of CPQ functions defined over T is an extension of the set of
CPA functions defined over T . Therefore it is advantageous to first discuss CPA
functions and triangulations, before we move the focus to CPQ functions.

2.1. Triangulation and CPA functions. In this section, we first define simplices
and triangulations. Then we define CPA functions and summarize some of their
characteristics such as their constant gradient over each simplex and the relation to
the shape matrices of the triangulation. Throughout this section, we use the same
notation as [12].

Definition 2.1 (simplex). Let (x0,x1, . . . ,xm) be an ordered (m + 1)-tuple of
affinely independent vectors in Rn, meaning that

∑m
i=1 λi(xi − x0) = 0 ⇒ λi =

0 ∀i = 1, 2, . . . ,m; in particular, this implies m ≤ n. Denote the set of all convex
combinations of these vectors by

co(x0,x1, . . . ,xm) :=

{
m∑
i=0

λixi : 0 ≤ λi ≤ 1,

m∑
i=0

λi = 1

}
.

Then the set G := co(x0,x1, . . . ,xm) is called an m-simplex and x0,x1, . . . ,xm

are its vertices. A face of the m-simplex co
(
x0, . . . ,xm

)
is a k-simplex, where

0 ≤ k < m, and the vertices of the k-simplex, the face, are a subset of the vertices
of the m-simplex.
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A collection of n-simplices in Rn is called a triangulation if it fulfills the conditions
of the next definition.

Definition 2.2 (triangulation). Let T be a collection of n-simplices Gν in Rn. If
every pair of distinct simplices Gν ,Gµ ∈ T , ν ̸= µ, either intersects in a common
face or not all, then we call T a triangulation.

We define the vertex set of a triangulation T by

VT := {x ∈ Rn : x is a vertex of a simplex in T },
and we say that T is a triangulation of the set DT if

DT =
⋃

Gν∈T
Gν .

We now recall the definitions of a CPA function, shape matrix and its gradient
from [12].

Definition 2.3 (CPA function). Let T = (Gν) be a triangulation of a set DT ⊂ Rn.
Assume we are given a number Px ∈ R for each vertex x ∈ VT . Then we can
uniquely define a continuous piecewise affine function P : DT → R in the following
way:

(i) P (x) := Px for every x ∈ VT ;
(ii) P is affine on every simplex Gν ∈ T , i.e. there exists a vector aν ∈ Rn and a

number bν ∈ R such that P (x) = aTν x+ bν for all x ∈ Gν .
For each simplex Gν ∈ T we define ∇Pν := ∇P |Gν

= aν . We note that ∇Pν is
constant on every simplex Gν .

x

P (x)

y

Figure 1. The green plot is a visualisation of part of a CPA func-
tion P : DT → R where DT ⊂ R2. The green nodes represent the
number Px ∈ R that we are given for every x ∈ VT (which are
represented by the black nodes).
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Definition 2.4 (shape matrices). Let T = (Gν) be a triangulation. For a simplex
Gν = co(xν

0 ,x
ν
1 , . . . ,x

ν
n) ∈ T , we define its shape matrix Xν ∈ Rn×n by

Xν :=
(
xν
1 − xν

0 ,x
ν
2 − xν

0 , . . . ,x
ν
n − xν

0

)T
. (1)

We refer to the set {Xν : Gν ∈ T } as the shape matrices of the triangulation T .

Remark 2.5. Recall from Definition 2.1 that xν
0 , x

ν
1 , . . . ,x

ν
n are affinely indepen-

dent. This means that the vectors xν
i − xν

0 , i = 1, . . . , n, are linearly independent.
Therefore, the rows of Xν are linearly independent so Xν is non-singular and has
an inverse.

Lemma 2.6. [11, Remark 9] Let T be a triangulation, P : DT → R a CPA function,
and Gν = co(xν

0 ,x
ν
1 , . . . ,x

ν
n) ∈ T . Then the gradient of P on the simplex Gν is

∇Pν = X−1
ν p where p = (p1, p2, . . . , pn)

T is a column vector with entries pi :=
Pxν

i
− Pxν

0
for i = 1, 2, . . . , n.

For the CPA interpolation of a function f : Gν → R we will use the following
well-known estimate, cf. e.g. [2, Proposition 4.1].

Lemma 2.7. Let f : Gν → R be twice continuously differentiable and denote by
H
(
f) : Gν → Rn×n its Hessian, and by H

(
f(w)

)
the value of the Hessian at w ∈ Gν .

For the CPA interpolation of f , i.e. x 7→
∑n

k=0 λkf(x
ν
k) where x =

∑n
k=0 λkx

ν
k with

λk ∈ [0, 1] and
∑n

k=0 λk = 1, the following estimate holds∣∣∣∣∣f
(

n∑
k=0

λkx
ν
k

)
−

n∑
k=0

λkf(x
ν
k)

∣∣∣∣∣ ≤ h2
νB,

where hν = maxxν
i ∈Gν

∥xν
i − xν

0∥2 and B := maxw∈Gν

∥∥∥H(f(w)
)∥∥∥

2
.

Note that ∥x∥2 denotes the Euclidean norm of a vector x ∈ Rn and ∥A∥2 :=
max∥x∥2=1 ∥Ax∥2 for A ∈ Rn×n denotes the induced matrix norm.

2.2. CPQ functions: definition. Having reviewed CPA functions, we now intro-
duce continuous piecewise quadratic (CPQ) functions. If we have a triangulation
T = (Gν) of the set DT and we are given a number rx ∈ R for every vertex
x ∈ VT such that f(x) = rx, then, by Definition 2.3, we can construct a function
P : DT → R satisfying P (x) = rx for every x ∈ VT that is affine on every simplex
Gν . That is, P is a CPA interpolation of f .

To construct a CPQ function g : DT → R, that is continuous on its whole domain
and a quadratic function on each Gν , we first add more points x ∈ Rn where we
demand g(x) = rx. For any two distinct vertices xi, xj of a simplex Gν ∈ T , we
introduce a new point xij := (xi + xj)/2 to be the midpoint between xi and xj ;

note that xij = xji. Let us denote by VCPQ
T the set containing the vertices VT of

T and these midpoints.
We will prove in the next theorem that we can uniquely construct a function

g : DT → R by demanding that g is continuous and quadratic and g(x) = rx
for every x ∈ VCPQ

T , where the rx ∈ R are given numbers, see Figure 2 (left) for
a schematic representation in one dimension and Figure 2 (right) for the vertices

VCPQ
T of one simplex in two dimensions.

Theorem 2.8. Let T = (Gν) be a triangulation of a set DT ⊂ Rn. For each pair of
distinct vertices xk,xl of a simplex Gν = co{x0,x1, . . . ,xn} ∈ T , k, l ∈ {0, 1, . . . , n},
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xk xkl xl

rk

rl

rkl

x0 = (0, 0)T

x2 = (1, 1)T

x1 = (1, 0)T

x12

x01

x02

Figure 2. (left) Visual representation of the addition of an extra
‘vertex’ xkl for a one-dimensional simplex. The blue curve repre-
sents a CPQ function, while the black line is a CPA function. Note
that rk := rxk

and rkl := rxkl
. (right) Visual representation of the

addition of extra ‘vertices’ for a two-dimensional simplex.

define xkl := (xk + xl)/2 to be the midpoint of the line segment connecting xk and

xl. Denote by VCPQ
T the set of all vertices VT and all such midpoints, i.e.

VCPQ
T :=

{
x+ y

2
: x and y are vertices of some Gν , where Gν ∈ T

}
; (2)

note x and y are not necessarily different.
Assume we are given a value rx ∈ R for each x ∈ VCPQ

T . Define the function
g : DT → R as follows: For an x ∈ DT there exists a simplex Gν such that x ∈ Gν

and x can be written uniquely as a convex combination of its vertices x0, . . . ,xn

x =

n∑
k=0

λkxk,

n∑
k=0

λk = 1, and λk ≥ 0 for k = 0, . . . , n.

We define

g(x) =

n∑
k=0

λkrk + 2

n∑
k=0

n∑
l=k+1

λkλl(2rkl − rk − rl), (3)

where rk := rxk
and rkl := rxkl

for k, l = 0, . . . , n, k ̸= l.
Then g : DT → R is a well-defined continuous function that is quadratic on each

Gν and fulfills g(x) = rx for every x ∈ VCPQ
T .

Proof. We first verify that g(xk) = rk for all xk ∈ VT and g(xkl) = rkl for every

xkl ∈ VCPQ
T \ VT .
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Verifying that g(xk) = rk: Let xk be any vertex of an arbitrary simplex T ∋ G =

co
(
x0, . . . ,xn

)
. By Definition 2.1, we know that xk can be written uniquely as a

convex combination of the vertices of G, meaning that xk =
∑n

i=0 λixi and we must
have λk = 1 and all other λi = 0. Then, it is clear from (3) that g(xk) = rk.
Verifying that g(xkl) = rkl: Let xkl be the midpoint of any two distinct vertices

xk, xl of an arbitrary simplex G = co
(
x0, . . . ,xn

)
∈ T , where we assume k < l

without loss of generality. Again using the property that since xkl ∈ G we can
write xkl uniquely as a convex combination of the vertices of G and we must have
λk = λl = 1

2 and all other λi = 0. Then, it is clear from (3) that g(xkl) =
1
2rk + 1

2rl + 2[ 14 (2rkl − rk − rl)] = rkl.
To show that g is a quadratic function on each simplex, we refer to Remark 2.12,

which shows that the Hessian of g is constant on each simplex G and thus g is
quadratic.

Finally, we show that g is continuous. By Definition 2.2, we know that simplices
either intersect in a common face or not at all. Assume that Gν and Gµ are two
distinct simplices that intersect in a common face. This means that on this face
they share the same vertices. Therefore, the CPQ function defined on this face will
be the same for both Gν and Gµ. Hence, g is continuous over the whole domain
DT since it is continuous on each simplex and on the shared common faces between
neighbouring simplices.

Remark 2.9. Consider a function f : DT → R and fix rx := f(x) for every

x ∈ VCPQ
T . We note that a CPA function P that interpolates f at the vertices

xk ∈ VT , i.e. P (x) = f(x) for every x ∈ VT is given by P (x) =
∑n

k=0 λkrk with the
notation from Theorem 2.8. Comparing this with the CPQ function g defined in
(3), we observe that g contains the CPA function P plus some additional quadratic
terms, i.e.

g(x) = P (x) + 2

n∑
k=0

n∑
l=k+1

λkλl(2rkl − rk − rl) on Gν .

2.3. CPQ functions: useful formulas. In Subsection 2.1, we defined for every
simplex Gν of a triangulation T the gradient∇Pν of a CPA function P , and provided
an explicit formula to calculate it. We will now derive formulas to compute the
gradient and Hessian of a CPQ function g for every simplex Gν . Similarly to the
formula given in Lemma 2.6 for ∇Pν , we will observe that both of our formulas for
the gradient and Hessian on Gν of a CPQ function will involve the simplex’s shape
matrix Xν . Note that the components of the gradient of g are CPA functions and
the Hessian of g is constant on each Gν .

We proceed in the following way to derive the gradient ∇gν , where the notation
gν denotes the restriction gν := g

∣∣
Gν

of g to Gν . We compute the directional

derivative of gν
(
x
)
in direction (xi−x0) in two ways: we first use the representation

of x + h(xi − x0) and take the derivative of gν
(
x + h(xi − x0)

)
with respect to h,

and then set h = 0. On the one hand, we use the chain rule to compute the same
derivative. For the Hessian Hν , we proceed similarly and compute the derivative
of ∂

∂xj
gν
(
x + h(xi − x0)

)
with respect to h for some fixed i ∈ {0, . . . , n} and j ∈

{1, . . . , n}.
We give a formula for the gradient in the following proposition.

Proposition 2.10. Let T = (Gν) be a triangulation of a set DT ⊂ Rn and g : DT →
R be a CPQ function over this set. Then, for each simplex Gν = co(x0, . . . ,xn), the
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gradient of g restricted to Gν is given by the formula

∇gν(x) = X−1
ν b(x) (4)

for all x ∈ Gν . Here, Xν is the shape matrix of the simplex Gν , see (1), and

b(x) =
(
b1(x), . . . , bn(x)

)T
is a column vector with entries given by (5)

bi(x) = bi

 n∑
j=0

λjxj

 =

n∑
j=0

λjbi(xj) with bi(xj) := r0 − ri + 4si(xj)− 4t(xj),

(5)

where x =
∑n

j=0 λjxj with
∑n

j=0 λj = 1 and λj ∈ [0, 1], is the unique representation
of x as a convex combination of the vertices of Gν ,

si(xj) =

{
rji, j ̸= i

ri, j = i
and t(xj) =

{
r0j , j ̸= 0

r0, j = 0,

and the rk, rkl are defined by (3). Note that the bi(xj) are linear in the rk and rkl,
where k, l = 0, 1, . . . , n and k ̸= l.

Proof. Consider an arbitrary simplex Gν ∈ T . For any x ∈ Gν = co(x0,x1, . . . ,xn),
we write x =

∑n
j=0 λjxj with λj ≥ 0 satisfying

∑n
j=0 λj = 1. Therefore, for any

fixed i ∈ {0, . . . , n} and x ∈ Gν , we have that

x+ h(xi − x0) = (λ0 − h)x0 +

i−1∑
j=1

λjxj + (λi + h)xi +

n∑
j=i+1

λjxj . (6)

By (3) we have

gν(x+ h(xi − x0)) = (λ0 − h)r0 +

n∑
l=1
l ̸=i

λlrl + (λi + h)ri

+ 2

n∑
l=1
l ̸=i

(λ0 − h)λl(2r0l − r0 − rl)

+ 2

n∑
l=1
l ̸=i

(λi + h)λl(2ril − ri − rl)

+ 2(λ0 − h)(λi + h)(2r0i − r0 − ri).

Now we take the derivative of gν
(
x + h(xi − x0)

)
with respect to h. Using that

rki = rik for any i, k ∈ {0, . . . , n}, i ̸= k, we obtain

d

dh
gν
(
x+ h(xi − x0)

)
=

d

dh

(λ0 − h)r0 +

n∑
l=1
l ̸=i

λlrl + (λi + h)ri

+
d

dh

[
2

n∑
l=1
l ̸=i

(λ0 − h)λl(2r0l − r0 − rl)

+ 2

n∑
l=1
l ̸=i

(λi + h)λl(2ril − ri − rl) + 2(λ0 − h)(λi + h)(2r0i − r0 − ri)
]
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= ri − r0 − 2

n∑
l=1
l ̸=i

λl(2r0l − r0 − rl) + 2

n∑
l=1
l ̸=i

λl(2rli − ri − rl)

+ 2(λ0 − λi − 2h)(2r0i − r0 − ri)

= ri − r0 + 2(λ0 − λi − 2h)(2r0i − r0 − ri) + 2

n∑
l=1
l ̸=i

[
λl(2rli − ri − 2r0l + r0)

]
.

Letting h = 0, we have, using
n∑

l=0

λl = 1, which implies that
n∑

l=1
l ̸=i

λl = 1− λ0 − λi

d

dh
gν
(
x+ h(xi − x0)

)∣∣∣∣
h=0

= ri − r0 + 2(λ0 − λi)(2r0i − r0 − ri) + 2

n∑
l=1
l ̸=i

[
λl(2rli − ri − 2r0l + r0)

]
= ri − r0 + 2(λ0 − λi)2r0i + 2(λ0 − λi)(−r0 − ri)

+ 2

n∑
l=1
l ̸=i

λl(r0 − ri) + 4

n∑
l=1
l ̸=i

λl(rli − r0l)

= (ri − r0)

[
1− 2

n∑
l=1
l ̸=i

λl

]
+ 4λ0r0i − 4λir0i

− 2(λ0 − λi)(r0 + ri) + 4

n∑
l=1
l ̸=i

λl(rli − r0l)

= (ri − r0)
[
1− 2(1− λ0 − λi)

]
+ 4λ0r0i − 4λir0i

− 2(λ0 − λi)(r0 + ri) + 4

n∑
l=1
l ̸=i

λl(rli − r0l)

= (ri − r0)(−1 + 2λ0 + 2λi) + 4λ0r0i − 4λir0i

− 2(λ0 − λi)(r0 + ri) + 4

n∑
l=1
l ̸=i

λl(rli − r0l)

= r0 − ri + 2(λ0ri − λ0r0 + λiri − λir0)− 2(λ0r0 + λ0ri − λir0 − λiri)

+ 4λ0r0i − 4λir0i + 4

n∑
l=1
l ̸=i

λl(rli − r0l)

= r0 − ri − 4λ0r0 + 4λiri + 4λ0r0i − 4λir0i + 4

n∑
l=1
l ̸=i

λl(rli − r0l)

= r0 − ri + 4

[
n∑

l=1
l ̸=i

λlrli + λ0r0i + λiri

]
− 4

[
n∑

l=1
l ̸=i

λlr0l + λir0i + λ0r0

]
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= r0 − ri + 4

[
n∑

l=0
l ̸=i

λlrli + λiri

]
− 4

[
n∑

l=1

λlr0l + λ0r0

]

= bi(x)

by (5). We also have by the chain rule that

bi(x) =
d

dh
gν
(
x+ h(xi − x0)

)∣∣∣∣∣
h=0

=

n∑
j=1

∂

∂xj
gν
(
x+ h(xi − x0)

)
(xi − x0)j

∣∣∣∣∣
h=0

=
(
∇gTν (x)X

T
ν

)
i
, (7)

where
(
∇gTν (x)X

T
ν

)
i
denotes the i-th column of the vector in R1×n and Xν is the

shape matrix of the simplex (see Definition 2.4). Therefore, we obtain

b(x)T = ∇gTν (x)X
T
ν ⇒ ∇gTν (x) = b(x)TX−T

ν ⇒ ∇gν(x) = X−1
ν b(x),

which shows (4).

We now give a formula for the Hessian in the following proposition.

Proposition 2.11. Let T = (Gν) be a triangulation of a set DT ⊂ Rn and g :
DT → R be a CPQ function over this set. Then, for each simplex Gν , the Hessian
of gν := g

∣∣
Gν

is the constant matrix

Hν = X−1
ν H̃, (8)

where Xν is the shape matrix of the simplex Gν , see (1), and H̃ ∈ Rn×n is a matrix
with entries given by (9)

h̃ij :=

n∑
k=1
k ̸=i

(X−1
ν )jk

[
4(r0 + rik − r0i − r0k)

]
+ (X−1

ν )ji

[
4(r0 + ri − 2r0i)

]
(9)

and the rk, rkl are defined by (3).

Remark 2.12. We stress that the matrices Hν and H̃ are both independent of x
and therefore constant, showing that the function gν is quadratic.

Proof. From (4), we have that

∂

∂xj
gν(x) =

n∑
k=1

(X−1
ν )jkbk(x), (10)

where (X−1
ν )jk is the entry in the j-th row and k-th column of X−1

ν , and bk(x) is
the k-th entry of b.

From (5), we have that

bk(x) = r0 − rk + 4

n∑
l=0

λls
k(xl)− 4

n∑
l=0

λlt(xl).

Now replacing x by x+ h(xi − x0) and using (6) so that λ0 becomes λ0 − h and
λi becomes λi + h, we can find a formula for bk

(
x + h(xi − x0)

)
in the following

way.
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Case 1: k = i

bi
(
x+ h(xi − x0)

)
= r0 − ri + 4

[
(λ0 − h)r0i +

n∑
l=1
l ̸=i

λlrli + (λi + h)ri

]

− 4
[
(λ0 − h)r0 + (λi + h)r0i +

n∑
l=1
l ̸=i

λlr0l

]
.

Therefore, when k = i,

d

dh

[
bi
(
x+ h(xi − x0)

)]
= −4r0i + 4ri + 4r0 − 4r0i

= 4r0 + 4ri − 8r0i.

Case 2: k ̸= i

bk
(
x+ h(xi − x0)

)
= r0 − rk + 4

[
(λ0 − h)r0k + (λi + h)rik +

n∑
l=1
l ̸=i
l ̸=k

λlrlk + λkrk

]

− 4
[
(λ0 − h)r0 + (λi + h)r0i +

n∑
l=1
l ̸=i

λlr0l

]
.

Therefore, when k ̸= i,

d

dh

[
bk
(
x+ h(xi − x0)

)]
= −4r0k + 4rik + 4r0 − 4r0i = 4(−r0k + rik + r0 − r0i).

Now we take the directional derivative with respect to (xi − x0), using (10):

d

dh

[ ∂

∂xj
gν
(
x+ h(xi − x0)

)]
=

n∑
k=1

d

dh

[
(X−1

ν )jkbk
(
x+ h(xi − x0)

)]
=

n∑
k=1

(X−1
ν )jk

d

dh

[
bk
(
x+ h(xi − x0)

)]
=

n∑
k=1
k ̸=i

(X−1
ν )jk

[
4(−r0k + rik + r0 − r0i)

]
+ (X−1

ν )ji(4r0 + 4ri − 8r0i).

= h̃ij , (11)

see (9), which is independent of h.
By the chain rule, we also have that

d

dh

[ ∂

∂xj
gν
(
x+ h(xi − x0)

)]
=

n∑
q=1

∂2

∂xq∂xj
gν
(
x+ h(xi − x0)

)
(xi − x0)q

=

n∑
q=1

[
H
(
gν
(
x+ h(xi − x0)

)]
qj
(xi − x0)q. (12)
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Denote by hqj the entry in the q-th row and j-th column of the Hessian Hν .
Then, from (11) and (12) and with h → 0, we have that

h̃ij =

n∑
q=1

hqj(xi − x0)q ⇒ H̃T = HT
ν X

T
ν

⇒ HT
ν = H̃T(X−T

ν )

⇒ Hν = X−1
ν H̃

which shows (8).

3. Computation of Lyapunov functions for SDEs using CPQ interpola-
tion. We are interested in using LP to parameterize CPQ functions that are non-
local Lyapunov functions for stochastic differential equations (SDEs). Lyapunov
functions are often used to analyze the stability of a dynamical system’s equilib-
rium as the existence of such a function cannot only imply the asymptotic stability
of an equilibrium, but also provide some information regarding its basin of attrac-
tion, cf. e.g. [9, 19, 20, 21, 26, 30, 33]. The idea of non-local Lyapunov functions for
SDEs is to use linearization to obtain a local Lyapunov function close to an equilib-
rium and then obtain stronger stability guarantees by combining it with non-local
Lyapunov functions. We will not discuss the theory further here, but refer the
interested reader to [15].

We first summarize some basic theory regarding SDE of Itô type from [7] and
[13]. We will see that a Lyapunov function V for an SDE satisfies an inequality
involving its gradient ∇V (x) and Hessian H

(
V (x)

)
. Since the Hessian of a CPA

function is zero, CPA functions cannot be used as Lyapunov functions for an SDEs.
However, we will prove that a CPQ function V can be used, provided that V satisfies
certain conditions at every vertex of the triangulation. The method we use to prove
this is similar to that used in the proof of Theorem 2.6 of [10], and all definitions
in Subsection 3.1 are from [7]. The important part is that these conditions can
be formulated as linear constraints in the variables of a linear programming (LP)
problem. Hence, we can use LP to compute non-local Lyapunov functions for SDEs.
The LP program is given in LP Problem 3.5 and in Theorem 3.4 we prove that a
feasible solution to the LP problem delivers a non-local Lyapunov function for the
SDE in question. The LP problem is a feasibility problem and the objective of the
LP problem is not needed. In Example 4.2 we show how the objective can be used
to force some conditions on the computed Lyapunov function.

3.1. Stochastic Differential Equation. We first define the SDE that we are
considering; note that these are differential equations whose solutions are random
processes. The interested reader can find further information regarding SDEs in
[22, 27, 28].

Definition 3.1 (SDE of Itô type). A stochastic differential equation of Itô type is
of the form

dX(t) = f
(
X(t)

)
dt+ g

(
X(t)

)
dW(t), (13)

where W(t) is a Q-dimensional Wiener process, and f : Rn → Rn and g : Rn →
Rn×Q are Lipschitz continuous.

We will assume that f(0) = g(0) = 0 such that X(t)≡0 is an equilibrium. We
want to learn more about the stability of the equilibrium X(t)≡0 of such systems,
in particular its γ-basin of attraction which we define below.
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Definition 3.2 (γ-basin of attraction). Consider the stochastic system given in (13)
and let 0 < γ ≤ 1. The γ-basin of attraction is the set of all initial conditions x
such that their trajectories will converge to the equilibrium as time tends to infinity
with a probability of at least γ. It can be represented by

γ-BOA =
{
x ∈ Rn : P

(
lim
t→∞

∥Xx(t)∥ = 0
)
≥ γ

}
,

where Xx(t) denotes the trajectory of the SDE with initial condition x.

Definition 3.3 (Non-local Lyapunov function for SDE). A non-local Lyapunov
function for a stochastic differential equation (SDE) is a function V : U \ M ⊂
Rn → R, V ∈ C2(U \ M), where U and M are neighbourhoods of the origin,
U ⊃ M , and M denotes the closure of M , satisfying

LV (x) := ∇V (x) · f(x) + 1

2

n∑
i,j=1

[
g(x)g(x)T

]
ij

[
H
(
V (x)

)]
ij
< 0,

∀x ∈ U \M , where H
(
V (x)

)
is the Hessian of V at x.

Typically U is a large neighbourhood andM a small one. The stability properties
of solution trajectories in M are taken care of by a local Lyapunov function that can
be computed by linearizing f and g around the origin [6]. The stability properties of
solution trajectories in U are then taken care of by the non-local Lyapunov function
[15]. We will only discuss the non-local Lyapunov function here. If a local Lyapunov
function is given and LV (x) < 0 for all x ∈ U \M , then it follows by Theorem 2.5 of
[7] that we can find a subset of the γ-basin of attraction of the origin. Therefore, we
are interested in determining what conditions we must impose on a CPQ function
V such that LV (x) ≤ −C, where C is some positive constant. Then, by Definition
3.3, V is a non-local Lyapunov function for the SDE.

To enhance the readability we first derive several estimates in the next section,
before we state our LP problem in Section 3.4 and prove that a feasible solution to
it delivers a non-local Lyapunov function in Theorem 3.4.

3.2. Some useful estimates for the LP problem. Consider the stochastic
differential equation given in (13). We want to determine under what condi-
tions a CPQ function V : U \ M ⊂ Rn → R is a non-local Lyapunov func-

tion for the SDE. Assume U \M is triangulated by T and let us consider an
arbitrary, but fixed simplex Gν ∈ T . To derive error estimates we first con-
sider a quadratic function V : Gν → R. Denote F1(x) := ∇V (x) · f(x) and
F2(x) :=

∑n
i,j=1

[
g(x)g(x)T

]
ij

[
H
(
V (x)

)]
ij
. Then LV (x) = F1(x) +

1
2F2(x). We

know we can write any x ∈ Gν as x =
∑n

k=0 λkxk where the xk are the vertices of
Gν , λk ≥ 0 and

∑n
k=0 λk = 1. Therefore,

F1(x) +
1

2
F2(x) = F1

(
n∑

k=0

λkxk

)
+

1

2
F2

(
n∑

k=0

λkxk

)

=

n∑
k=0

λkF1(xk) + F1

(
n∑

k=0

λkxk

)
−

n∑
k=0

λkF1(xk)

+
1

2

n∑
k=0

λkF2(xk) +
1

2
F2

(
n∑

k=0

λkxk

)
− 1

2

n∑
k=0

λkF2(xk)
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≤
n∑

k=0

λkF1(xk) +

∣∣∣∣∣F1

(
n∑

k=0

λkxk

)
−

n∑
k=0

λkF1(xk)

∣∣∣∣∣
+

1

2

n∑
k=0

λkF2(xk) +
1

2

∣∣∣∣∣F2

(
n∑

k=0

λkxk

)
−

n∑
k=0

λkF2(xk)

∣∣∣∣∣.
Note that we have added and subtracted the CPA approximations of F1(x) and
F2(x) in order to bound LV (x) above by the CPA error estimates that we calculated
in Section 2.1.

Recall that by Lemma 2.7 we have
∣∣∣Fj

(∑n
k=0 λkxk

)
−
∑n

k=0 λkFj(xk)
∣∣∣ ≤ h2

νBj ,

where hν = maxxi∈Gν∥xi − x0∥2, and Bj = maxw∈Gν

∥∥∥H(Fj(w)
)∥∥∥

2
for j = 1, 2,

where H
(
Fj(w)

)
is the Hessian of Fj at w. To simplify calculations, we bound the

matrix norm ∥A∥2 = max∥x∥2=1 ∥Ax∥2 above by the max matrix norm ∥A∥max :=
maxi,j=1,...,n |aij |. Then,

max
w∈Gν

∥∥∥H(Fj(w)
)∥∥∥

2
≤ n max

w∈Gν

∥∥∥H(Fj(w)
)∥∥∥

max

and we obtain,

F1(x) +
1

2
F2(x) ≤

n∑
k=0

λk

[
F1(xk) +

1

2
F2(xk)

]
+ h2

ν

(
B1 +

B2

2

)
≤

n∑
k=0

λk

[
F1(xk) +

1

2
F2(xk)

]
+ h2

νnmax
w∈G

∥∥∥H(F1(w)
)∥∥∥

max

+
1

2
h2
νnmax

w∈G

∥∥∥H(F2(w)
)∥∥∥

max
. (14)

We now calculate upper bounds on maxx∈Gν

∥∥∥H(Fj(x)
)∥∥∥

max
for j = 1, 2.

Calculating a bound on maxx∈Gν

∥∥∥H(F1(x)
)∥∥∥

max
:

The (i, j)-th entry of H
(
F1(x)

)
∈ Rn×n is given by ∂2F1(x)

∂xi∂xj
. For fixed i, j ∈

{1, . . . , n}, we have for any x ∈ Gν

∂2F1(x)

∂xi∂xj
=

∂2

∂xi∂xj

(
∇V (x) · f(x)

)

=
∂2

∂xi∂xj

(
n∑

k=1

∂V (x)

∂xk
fk(x)

)

=
∂

∂xi

[
n∑

k=1

∂V (x)

∂xk

∂fk(x)

∂xj
+

∂2V (x)

∂xj∂xk
fk(x)

]

=

n∑
k=1

(
∂V (x)

∂xk

∂2fk(x)

∂xi∂xj
+

∂2V (x)

∂xi∂xk

∂fk(x)

∂xj
+

∂2V (x)

∂xj∂xk

∂fk(x)

∂xi

)
,

where we have used that V is a quadratic function on Gν .
Then, with h∞

ν := maxx∈Gν ∥x− x0∥∞, we get

max
x∈Gν

∥∥∥H(F1(x)
)∥∥∥

max
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= max
x∈Gν

[
max

i,j=1...,n

∣∣∣∣∣
n∑

k=1

∂V (x)

∂xk

∂2fk(x)

∂xi∂xj
+

∂2V (x)

∂xi∂xk

∂fk(x)

∂xj
+

∂2V (x)

∂xj∂xk

∂fk(x)

∂xi

∣∣∣∣∣
]

≤ max
x∈Gν

[
n∑

k=1

max
i,j=1,...,n

∣∣∣∣∣∂V (x)

∂xk

∂2fk(x)

∂xi∂xj
+

∂2V (x)

∂xi∂xk

∂fk(x)

∂xj
+

∂2V (x)

∂xj∂xk

∂fk(x)

∂xi

∣∣∣∣∣
]

≤ max
x∈Gν

n∑
k=1

[(
max

p=1,...,n

∣∣∣∣∣∂V (x)

∂xp

∣∣∣∣∣
)(

max
i,j,p=1,...,n

∣∣∣∣∣[H(fp(x))]ij
∣∣∣∣∣
)

+

(
max

i,p=1...,n

∣∣∣∣∣[H(V (x)
)]

ip

∣∣∣∣∣
)(

max
j,p=1,...,n

∣∣∣∣∣[Dfp(x)
]
j

∣∣∣∣∣
)

+

(
max

j,p=1...,n

∣∣∣∣∣[H(V (x)
)]

jp

∣∣∣∣∣
)(

max
i,p=1,...,n

∣∣∣∣∣[Dfp(x)
]
i

∣∣∣∣∣
)]

≤ max
x∈Gν

n∑
k=1

[∥∥∥∇V (x)
∥∥∥
∞

· max
p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

+2
∥∥∥H(V (x)

)∥∥∥
max

·
∥∥∥Df(x)

∥∥∥
max

]

≤ n

[
max
x∈Gν

∥∥∥∇V (x)
∥∥∥
∞

· max
x∈Gν

(
max

p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

)

+2max
x∈Gν

∥∥∥H(V (x)
)∥∥∥

max
· max
x∈Gν

(∥∥∥Df(x)
∥∥∥
max

)]

≤ n

[(∥∥∥∇V (x0)
∥∥∥
∞

+ nh∞
ν max

x∈Gν

∥∥∥H(V (x)
)∥∥∥

max

)
· max
x∈Gν

(
max

p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

)

+2max
x∈Gν

∥∥∥H(V (x)
)∥∥∥

max
· max
x∈Gν

∥∥∥Df(x)
∥∥∥
max

]
=: Eν

1 , (15)

where fp(x) is the p-th entry of the vector-valued function f , H
(
fp(x)

)
is the Hessian

of the p-th entry of f , and Dfp(x) is the vector whose j-th entry is
[
Dfp(x)

]
j
=

∂fp(x)
∂xj

. We also used that∥∥∥∇V (x)
∥∥∥
∞

−
∥∥∥∇V (x0)

∥∥∥
∞

≤
∥∥∥∇V (x)−∇V (x0)

∥∥∥
∞

=
∥∥∥ ∫ 1

0

H
(
V (x0 + t[x− x0])

)
· [x− x0]dt

∥∥∥
∞

≤ h∞
ν max

w∈Gν

∥∥∥H(V (w)
)∥∥∥

∞

≤ nh∞
ν max

w∈Gν

∥∥∥H(V (w)
)∥∥∥

max
.

Calculating a bound on maxx∈Gν

∥∥∥H(F2(x)
)∥∥∥

max
:

We note that H
(
F2(x)

)
∈ Rn×n where its (l,m)-th entry is ∂2F2(x)

∂xl∂xm
. Recall from
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Remark 2.12 that H
(
V (x)

)
is constant and therefore its derivatives are zero. Then,

for fixed l,m ∈ {1, . . . , n}, we have for any x ∈ Gν that

∂2F2(x)

∂xl∂xm
=

∂2

∂xl∂xm

(
n∑

i,j=1

[
g(x)g(x)T

]
ij

[
H
(
V (x)

)]
ij

)

=
∂2

∂xl∂xm

(
n∑

i,j=1

Q∑
k=1

gik(x)gjk(x)
∂2V (x)

∂xi∂xj

)

=
∂

∂xl

n∑
i,j=1

Q∑
k=1

(
∂gik(x)

∂xm
gjk(x) + gik(x)

∂gjk(x)

∂xm

)
∂2V (x)

∂xi∂xj

=
n∑

i,j=1

Q∑
k=1

(
∂2gik(x)

∂xl∂xm
gjk(x) +

∂gik(x)

∂xm

∂gjk(x)

∂xl

+
∂gik(x)

∂xl

∂gjk(x)

∂xm
+ gik(x)

∂2gjk(x)

∂xl∂xm

)
∂2V (x)

∂xi∂xj
.

Then,

max
x∈Gν

∥∥∥H(F2(x)
)∥∥∥

max

= max
x∈Gν

(
max

l,m=1,...,n

∣∣∣∣∣
n∑

i,j=1

Q∑
k=1

(
∂2gik(x)

∂xl∂xm
gjk(x) +

∂gik(x)

∂xm

∂gjk(x)

∂xl

+
∂gik(x)

∂xl

∂gjk(x)

∂xm
+ gik(x)

∂2gjk(x)

∂xl∂xm

)
∂2V (x)

∂xi∂xj

∣∣∣∣∣
)

≤ max
x∈Gν

[
n∑

i,j=1

Q∑
k=1

∣∣∣∣∂2V (x)

∂xi∂xj

∣∣∣∣ · max
l,m=1,...,n

∣∣∣∣∣∂2gik(x)

∂xl∂xm
gjk(x) +

∂gik(x)

∂xm

∂gjk(x)

∂xl

+
∂gik(x)

∂xl

∂gjk(x)

∂xm
+ gik(x)

∂2gjk(x)

∂xl∂xm

∣∣∣∣∣
]

≤ max
x∈Gν

n∑
i,j=1

Q∑
k=1

max
p,r=1,...,n

∣∣∣∣∣[H(V (x)
)]

pr

∣∣∣∣∣·[(
max

p,l,m=1,...,n
q=1,...,Q

∣∣∣∣∣[H(gpq(x)
)]

lm

∣∣∣∣∣
)(

max
r=1,...,n
q=1,...,Q

∣∣∣grq(x)
∣∣∣)

+

(
max

p,m=1,...,n
q=1,...,Q

∣∣∣∣∣[∇gpq(x)
]
m

∣∣∣∣∣
)(

max
r,l=1,...,n
q=1,...,Q

∣∣∣∣∣[∇grq(x)
]
l

∣∣∣∣∣
)

+

(
max

p,l=1,...,n
q=1,...,Q

∣∣∣∣∣[∇gpq(x)
]
l

∣∣∣∣∣
)(

max
r,m=1,...,n
q=1,...,Q

∣∣∣∣∣[∇grq(x)
]
m

∣∣∣∣∣
)

+

(
max

p=1,...,n
q=1,...,Q

∣∣∣gpq(x)
∣∣∣)( max

r,l,m=1,...,n
q=1,...,Q

∣∣∣∣∣[H(grq(x)
)]

lm

∣∣∣∣∣
)]
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= max
x∈Gν

[
n∑

i,j=1

Q∑
k=1

∥∥∥H(V (x)
)∥∥∥

max

(
2 max

p=1,...,n
q=1,...,Q

∥∥∥H(gpq(x)
)∥∥∥

max

∥∥∥g(x)∥∥∥
max

+ 2 max
p=1,...,n
q=1,...,Q

∥∥∥∇gpq(x)
∥∥∥2
∞

)]

≤ 2n2Qmax
x∈Gν

∥∥∥H(V (x)
)∥∥∥

max

[
max
x∈Gν

(
max

p=1,...,n
q=1,...,Q

∥∥∥H(gpq(x)
)∥∥∥

max

)
max
x∈Gν

∥∥∥g(x)∥∥∥
max

+ max
x∈Gν

(
max

p=1,...,n
q=1,...,Q

∥∥∥∇gpq(x)
∥∥∥2
∞

)]
=: Eν

2 , (16)

where gpq(x) is the (p, q)-th entry of the matrix-valued function g, H
(
gpq(x)

)
is

the Hessian of the (p, q)-th entry of g, and ∇gpq(x) is the vector whose m-th entry

is
[
∇gpq(x)

]
m

=
∂gpq(x)
∂xm

.

Substituting (15) and (16) into (14), we get

F1(x) +
1

2
F2(x) ≤

n∑
k=0

λk

[
F1(xk) +

1

2
F2(xk)

]
+ nh2

ν

(
Eν

1 +
1

2
Eν

2

)
.

Denote Eν := nh2
ν

(
Eν

1+Eν
2 /2
)
. Assume that LV (xk) = F1(xk)+

1
2F2(xk)+Eν ≤

−C for every vertex xk of Gν , where C is some positive constant. Then

F1(x) +
1

2
F2(x) ≤

n∑
k=0

λk

[
F1(xk) +

1

2
F2(xk)

]
+ Eν ≤

n∑
k=0

(−λk)C = −C < 0

for every x ∈ Gν .
We now consider how to implement the error term Eν as linear constraints in

the values of V at the vertices xk. Let us first rewrite

Eν =
∥∥∥∇V (x0)

∥∥∥
∞

· n2h2
ν max
x∈Gν

(
max

p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

)

+ max
x∈Gν

∥∥∥H(V (x)
)∥∥∥

max
· n2h2

ν

{
nQ

[
max
x∈Gν

(
max

p=1,...,n
q=1,...,Q

∥∥∥H(gpq(x)
)∥∥∥

max

)
max
x∈Gν

∥∥∥g(x)∥∥∥
max

+ max
x∈Gν

(
max

p=1,...,n
q=1,...,Q

∥∥∥∇gpq(x)
∥∥∥2
∞

)]
+ nh∞

ν max
x∈Gν

(
max

p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

)

+ 2max
x∈Gν

∥∥∥Df(x)
∥∥∥
max

]}
. (17)

Now note, that ∇V (x0) is a vector, whose components are linear in the values of
V at xk and xlk by Proposition 2.10 and Hν := H

(
V (x)) is a symmetric n × n

matrix independent of x ∈ Gν , whose entries are also linear in the values of V at the
vertices xk and xlk by Proposition 2.11. All the other terms in (17) are constants
that can be computed or bounded by the problem data, i.e. the functions f and g
and the simplex Gν .

The maximum of absolute values is easily modelled by linear constrains, i.e.

max{|a1|, |a2|, . . . , |ak|} ≤ A ⇔ −A ≤ ai ≤ A for i = 1, 2, . . . , k.
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Hence, if Nν and Pν are variables such that∥∥∇V (x0)
∥∥
∞ ≤ Nν and

∥∥Hν
∥∥
max

≤ Pν (18)

and C1
ν and C2

ν are constants such that

Cν
1 ≥ n2h2

ν max
x∈Gν

(
max

p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

)
(19)

and

Cν
2 ≥ n2h2

ν

{
nQ

[
max
x∈Gν

(
max

p=1,...,n
q=1,...,Q

∥∥∥H(gpq(x)
)∥∥∥

max

)
max
x∈Gν

∥∥∥g(x)∥∥∥
max

+ max
x∈Gν

(
max

p=1,...,n
q=1,...,Q

∥∥∥∇gpq(x)
∥∥∥2
∞

)]
+ nh∞

ν max
x∈Gν

(
max

p=1,...,n

∥∥∥H(fp(x))∥∥∥
max

)

+ 2max
x∈Gν

∥∥∥Df(x)
∥∥∥
max

]}
, (20)

then

∇V (xk) · f(xk) +
1

2

n∑
i,j=1

[
g(xk)g(xk)

T
]
ij
Hν

ij + Cν
1Nν + Cν

2Pν ≤ −C (21)

for every vertex xk of Gν implies that

∇V (x) · f(x) + 1

2

n∑
i,j=1

[
g(x)g(x)T

]
ij

[
H
(
V (x)

)]
ij
≤ −C (22)

for all x ∈ Gν . In the next section we assume we have a CPQ function V defined

on DT = U \M , such that its restriction V
∣∣
Gν

to each Gν ∈ T fulfills (21), and we

will show that if ∇V is continuous, this implies for every compact K ⊂ (DT )
◦ and

every δ > 0 the existence of a non-local Lyapunov function Vε : K → R, such that
|Vε(x)− V (x)| < δ for all x ∈ K.

3.3. Non-local Lyapunov function from a CPQ function. Assume V is a

CPQ function defined on DT = U \M and for every Gν ∈ T denote by Vν : Gν → R
its restriction V

∣∣
Gν

to Gν . Then, by (5) of Proposition 2.10, the components of

∇Vν(x) are affine for every Gν ∈ T . It follows that if

∇Vν(x
ν
i ) = ∇Vµ(x

µ
j ), (23)

whenever xν
i = xµ

j is a vertex of both Gν and Gµ in T , then ∇V : DT → Rn,

∇V (x) := ∇Vν(x) if x ∈ Gν , is a well-defined and continuous function. Indeed,
each of its components [∇V ]i, i = 1, . . . , n, is a CPA function on the triangulation
T . Hence, we can force continuity of ∇V by using the constraints (23) in an LP
program. We come to the main theorem of this section:

Theorem 3.4. Assume V is a CPQ function defined on DT = U \M that fulfills
(23) and such that its restriction V

∣∣
Gν

to each Gν ∈ T fulfills (21). Let δ > 0 and

K ⊂ (DT )
◦ be a compact set. Then, for all sufficiently small ε > 0, there exists a

non-local Lyapunov function Vε : D−ε
T → R such that |Vε(x)− V (x)| < δ for every

x ∈ D−ε
T , where

D−ε
T := {x ∈ DT : Bε(x) ⊂ DT } ⊃ K. (24)
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Proof. Define ϕ : Rn → R+
0 , ϕ(x) := C∗ exp(−1/(1− ∥x∥2)) for ∥x∥2 < 1 and

ϕ(x) := 0 otherwise and choose the constant C∗ such that
∫
Rn ϕ(y) dy = 1. For

ε > 0 define

ϕ̃ε(x) :=
ϕ(x/ε)

εn
.

Define Vε := V ∗ ϕ̃ε, i.e., Vε(x) =
∫
DT

V (y)ϕ̃ε(x − y) dy. It is well-known that

Vε, ϕ̃ε ∈ C∞(Rn) and that Vε and ∇Vε approximate V and ∇V uniformly on D−ε
T ,

i.e.

sup
x∈D−ε

T

max{|Vε(x)− V (x)|, ∥∇Vε(x)−∇V (x)∥2} → 0 as ε → 0+.

By [18, Lemma 4.13] we have for ε > 0 and x ∈ D−ε
T the formula

H
(
Vε(x)) =

∑
ν

αx,ε
ν Hν , where αx,ε

ν :=

∫
Gν∩Bε(x)

ϕ̃ε(x− y) dy. (25)

Note that the nonnegative numbers αx,ε
ν only depend on x and ε > 0 and not on

V , and they sum to one for every x ∈ D−ε
T ; the sum

∑
ν denotes that we sum over

all ν such that Gν ∈ T .
Now, for a given δ > 0 and compact K ⊂ (DT )

◦, and the constant C > 0 in (21),
choose ε > 0 so small that K ⊂ D−ε

T ,

|Vε(x)− V (x)| < δ and ∥∇Vε(x)−∇V (x)∥2 · ∥f(x)∥2 ≤ C

2

for every x ∈ D−ε
T . Then, for every x ∈ D−ε

T we have

∇Vε(x) · f(x) +
1

2

n∑
i,j=1

[
g(x)g(x)T

]
ij

[
H
(
Vε(x)

)]
ij

= [∇Vε(x)−∇V (x)] · f(x)

+
∑
ν

αx,ε
ν

[
∇V (x) · f(x) + 1

2

n∑
i,j=1

[
g(x)g(x)T

]
ij

[
Hν
]
ij

]
≤ C

2
− C = −C

2
,

which concludes the proof.

For Vε to strictly fulfill the conditions in Definition 3.3 one can choose open
neighbourhoods U ′ ⊂ U and M ′ ⊃ M of the origin with M ′ ⊂ U ′, such that
D−ε

T ⊃ U ′ \M ′ ⊃ K.

3.4. The LP problem.

Linear Programming Problem 3.5. Consider the SDE (13) and assume that
two neighbourhoods U,M ⊂ Rn of the origin are given, M ⊂ U , together with a

triangulation T of U \M . The variables of the LP problem are Vx ∈ R for every
x = (xν

i + xν
j )/2, where xν

i and xν
j are vertices of a simplex Gν ∈ T . Note that

with i = j the formula x = (xν
i + xν

j )/2 includes the vertices x ∈ Rn of the simplex
Gν ∈ T . These values correspond to the values ri and rij needed to define a CPQ
function on T . Further variables are Nν ∈ R and Pν ∈ R for every simplex Gν ∈ T
and B ∈ R to separate values of V on ∂U from those on ∂M . Recall that the
components of ∇Vν(x

ν
i ) and Hν

ij are linear in the variables Vx by Propositions 2.10
and 2.11, respectively.
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The constants of the LP problem are C > 0, δ∂ > 0, and Cν
1 and Cν

2 as defined
in (19) and (20) for every ν such that Gν ∈ T . The constant C > 0 is used to force
LV to be negative and the constant δ∂ > 0 is used to separate values of V on ∂U
from those on ∂M . Both are typically small, e.g. 10−4.

The constraints of the LP problem are:

• For every ν such that Gν ∈ T we demand∥∥∇V (x0)
∥∥
∞ ≤ Nν and

∥∥Hν
∥∥
max

≤ Pν . (26)

• For every x = xν
i = xµ

j , where xν
i is a vertex of Gν ∈ T and xµ

j is a vertex of
Gµ ∈ T , we demand

∇Vν(x
ν
i ) = ∇Vµ(x

µ
j ). (27)

• For every Gν ∈ T and every vertex xν
k of Gν we demand

∇Vν(x
ν
k) · f(xν

k) +
1

2

n∑
i,j=1

[
g(xν

k)g(x
ν
k)

T
]
ij
Hν

ij + Cν
1Nν + Cν

2Pν ≤ −C. (28)

The next two constraints are used to let V take lower values at the inner boundary

than at the outer boundary of U \M :

• For every x = xν
i ∈ ∂M , where xν

i is a vertex of Gν ∈ T , we demand

Vx ≤ B − δ∂ , (29)

and for every x = xν
i ∈ ∂U , where xν

i is a vertex of Gν ∈ T , we demand

Vx ≥ B + δ∂ . (30)

Let us discuss the constraints of LP Problem 3.5 and their significance.

• The constraints (26), see (18), are used to obtain upper bounds Nν and Pν

on
∥∥∇V (x0)

∥∥
∞ and

∥∥Hν
∥∥
max

, respectively, that are used to bound the inter-

polation error in constraints (28).
• The constraints (27), see (23), are used to force ∇V to be continuous.
• The constraints (28), see (21) and (22), ensure that LVν ≤ −C on each

simplex.
• The constraints (29) and (30) are used to let V take lower values at the

inner boundary than at the outer boundary of U \M . This is useful because
the level sets of a non-local Lyapunov function are needed to make stability
guarantees. Note, however, that Vx ≤ B − δ∂ for all vertices at the inner

boundary ∂M of U \M does not necessarily imply that V (x) ≤ B− δ∂ for all

x at the inner boundary ∂M of U \M as V is a piecewise quadratic function,
nor analogously for the outer boundary. Hence, the level sets of the computed
V need be checked a posteriori.

Altogether, these constraints imply with Theorem 3.4 the existence of a non-local
Lyapunov function.

4. Examples. We demonstrate our method for two systems from the literature.
We implemented the method in C++ and used the linear solver Gurobi to solve
the resulting LP problems. Both examples were solved in less than 20 seconds on a
normal PC running on Linux Mint 20.1.
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Figure 3. The triangulation used to compute a non-local Lya-
punov function for system (31).

4.1. Two-dimensional System. Consider a harmonic oscillator

ẍ(t) + γẋ(t) + κx(t) = 0,

where the damping γ and the intensity of the force κ fluctuate randomly (white
noise). This system has been studied in [22, Example 6.6] and [17]. In state-
space form this can be modelled with the two-dimensional linear SDE, denoting

X(t) =

(
x(t)
ẋ(t)

)
,

dX = AXdt+B1XdW1 +B2XdW2, (31)

where W1 and W2 are independent one-dimensional Brownian motions,

A :=

(
0 1
−κ −γ

)
, B1 :=

(
0 0
0 −σ1

)
, B2 :=

(
0 0

−σ2 0

)
,

and the constants σ1 and σ2 determine the intensity of the fluctuations γ and κ
respectively. For our method the simple form of the SDE, i.e. linear with constant
coefficients, is not an advantage. However, this means that the stability of the origin
for the system is more tractable with classical methods.

We fix the parameters of the problem as κ = 1, γ = 0.1, σ1 = 0.3, and σ2 = 0.5.
One can verify that there does not exist a symmetric and positive definite P ∈ R2×2

such that ATP + PA + BT
1 PB1 + BT

2 PB2 is negative definite, which implies that
there does not exist a quadratic Lyapunov function V (x) = xTPx for the system
assuring mean-square stability of the origin. This implies by [1, Corollary 11.4.14]
that the origin cannot be mean-square stable. However, using

Cν
1 = 0 and Cν

2 = n2h2
ν [nQmax(σ2

1 , σ
2
2) + 2max(1, |κ|, |γ|)] = 12h2

ν ,

see formulas (19) and (20), and the triangulation shown in Figure 3, we were able
to compute a non-local Lyapunov function for the system using the LP Problem
3.5. The Lyapunov function is depicted in Figure 4.
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Figure 4. Non-local Lyapunov function for system (31).

4.2. One-dimensional System. We consider the non-linear system

dX = sin(X)dt+
3X

1 +X2
dW (32)

from [7], where W is a one-dimensional Wiener-process. Note that the deterministic
part of the system, i.e. ẋ = sin(x), has an unstable equilibrium at the origin. Hence,
it is an example of a system with an unstable equilibrium which is stabilized by
noise. Since f(x) = sin(x) and g(x) = 3x/(1 + x2) are odd functions, it is enough
to compute a non-local Lyapunov function V for x ≥ 0, because it can be extended
symmetrically V (x) = V (−x) to x ≤ 0. The one-dimensional simplices of the
triangulation of [0, 8] we used for our computation were [xi−1, xi] with xi = i·8/2400
and i = 4, 5, . . . , 2400. We used LP Problem 3.5 to assert LV (x) ≤ −C with
C = 10−7 on [x3, x2400] = [0.01, 8] and V (x2400)− V (x3) ≥ 2δ∂ = 2 · 10−4.

Since the LP Problem 3.5 is a feasibility problem, and the objective is not needed
to compute a non-local Lyapunov function, we experimented with an objective. For
this we added to the original LP problem the auxiliary variableD and the additional
constraints: for every simplex Gν = [xν

i−1, x
ν
i ] we demand for k = i− 1, i that

∇Vν(x
ν
k) · f(xν

k) +
1

2

n∑
i,j=1

[
g(xν

k)g(x
ν
k)

T
]
ij
Hν

ij − Cν
1Nν − Cν

2Pν ≥ −C −D. (33)

The objective of the LP problem was then to minimize D. Hence, with a similar
argumentation as (21) to (22), from a feasible solution we get a V ∈ C1([0.01, 8])
that fulfills

−C −D ≤ LV (x) ≤ −C

except (possibly) at the points xi, i = 3, 4, . . . , 2400, where LV might not even
be defined. Hence, the objective and additional constraints force the computed
non-local Lyapunov function to have LV (x) very close to zero. In our example, we
obtained a value of D = 8 · 10−7.
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Figure 5. Non-local Lyapunov function for system (32).

The computed Lyapunov function is qualitatively the same as the one computed
in [7] by numerically solving LV (x) = −10−3 using collocation with radial basis
functions. However, as we manage to keep LV (x) closer to zero, the level-sets are
slightly larger, which results in the asserted γ-basin of attraction to be larger. Fur-
ther, note that our computed function delivers a true non-local Lyapunov function
Vε automatically by construction, whereas the function computed in [7] had to be
rigourously verified by evaluating it at 750 million points. Hence, the computa-
tional time is shortened to seconds in our new method from hours needed for the
verification in [7].

5. Conclusion. We have developed a linear programming (LP) problem to com-
pute continuous piecewise quadratic (CPQ) non-local Lyapunov functions for sto-
chastic differential equations (SDEs) with an equilibrium which is asymptotically
stable in probability. As the Lyapunov function of a SDE must satisfy an inequal-
ity involving a second-order differential operator, one cannot employ continuous
piecewise affine (CPA) functions.

We have provided explicit formulas for the gradient and Hessian of CPQ functions
over a simplex, which, similarly to the gradient of a CPA function, involve the
simplex’s shape matrix. By enforcing continuity of the gradient, the CPQ function
can be mollified with arbitrarily close level sets. We have applied our method to
two systems from the literature and have used the proposed LP problem to compute
non-local Lyapunov functions for these systems.

In the future, we plan on making our software to compute CPQ Lyapunov func-
tions for SDEs more user-friendly and publish it in a public repository.
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of a mathematical model of smoking. Stat. Probabil. Lett., 81:1276–1284, 2011.

[26] A. M. Lyapunov. The general problem of the stability of motion. Internat. J. Control,

55(3):521–790, 1992. Translated by A. T. Fuller from Édouard Davaux’s French translation
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