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ABSTRACT. We develop an algorithm to parameterize continuous and piece-
wise quadratic (CPQ) Lyapunov functions for stochastic differential equations
(SDEs) using linear programming (LP). The algorithm is a non-trivial ex-
tension of algorithms to parameterize continuous and piecewise linear (CPA)
Lyapunov functions for ordinary differential equations (ODESs), but since the
conditions for a Lyapunov function for a stochastic system involve second order
derivatives, CPA Lyapunov functions cannot exist for stochastic systems and
hence CPQ Lyapunov functions are needed. We demonstrate our algorithm on
two examples from the literature.

1. Introduction. Continuous piecewise affine (CPA) functions have been widely
used as a method to approximate functions of interest, such as in the computation
of Lyapunov functions for autonomous dynamical systems, see [12]. Since the con-
ditions for a Lyapunov function for stochastic differential equations (SDEs) involve
the infinitesimal generator for the SDE, they include second-order derivatives of
the Lyapunov functions, and therefore such a function cannot be piecewise linear.
In general, the computation of Lyapunov functions for SDEs is considerably more
difficult than for ODEs, see, e.g. [8, 14].

In this paper we develop an algorithm that uses linear programming (LP) to com-
pute continuous piecewise quadratic (CPQ) Lyapunov functions for SDEs. More
exactly, from a feasible solution to the LP problem, a CPQ function can be pa-
rameterized and this CPQ function can be mollified to a smooth function, which
is a non-local Lyapunov function for the SDE in question, see Theorem 3.4. The
mollification can be be done such that the level-sets of the parameterized CPQ func-
tion and the smooth non-local Lyapunov function are arbitrarily close. Since the
level-sets are the interesting part of a non-local Lyapunov function, we will simply
refer to the CPQ function with these properties as a non-local Lyapunov function.
Note that the mollification of a piecewise linear function, i.e. a CPA function, would
deliver a function whose second-order derivative is zero, except at the boundaries
of the areas where the original function is linear. Hence, it is not suited to assert
stability for an SDE.
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Note that the stability of equilibria for SDEs is a very difficult problem. In the lit-
erature, to the best of the authors’ knowledge, this problem has only been addressed
analytically for particular systems with a simple structure and often the analysis is
reduced to verifying mean-square exponential stability, see e.g. [21, 25, 27, 29, 31].
For general nonlinear systems Lyapunov functions have been computed by solving
the corresponding stochastic Zubov PDE numerically with [5, 7] or without [14]
subsequent verification. For linear SDEs with constant coefficients the problem of
computing a Lyapunov function assuring mean-square exponential stability is not
too difficult; in general a linear matrix inequality (LMI) approach can be used, see
e.g. [3], and in two dimensions there is even an analytical solution [32]. For com-
puting Lyapunov functions to assert the more general global asymptotic stability
for linear SDEs with constant coefficients, one can formulate the conditions for a
Lyapunov function as bilinear matrix inequalities (BMIs) [3, 4, 16], which can often
be solved using heuristics, see e.g. [23, 24].

In this paper we will discuss and review the necessary theory for our algorithm.
In particular, in Section 2 we thoroughly discuss our parameterization of CPQ
functions, their relation to CPA functions, and derive formulas for their gradient
and Hessian in a form that is suited for our LP problem. Section 3 contains the main
results of the paper. We first discuss SDEs as well as local- and non-local Lyapunov
functions for them, before we derive conditions for a CPQ function to be a non-local
Lyapunov function. In Theorem 3.4 we then prove the claimed properties above
about the mollification of the CPQ non-local Lyapunov function. We conclude
Section 3 by stating our linear programming problem in LP Problem 3.5 and prove
that a feasible solution to it parameterizes a CPQ non-local Lyapunov function for
the system in question. In Section 4 we compute CPQ Lyapunov functions for two
examples from the literature and then we conclude the paper in Section 5.

2. Continuous Piecewise Quadratic (CPQ) Functions. For a given triangu-
lation 7, the set of CPQ functions defined over 7T is an extension of the set of
CPA functions defined over 7. Therefore it is advantageous to first discuss CPA
functions and triangulations, before we move the focus to CPQ functions.

2.1. Triangulation and CPA functions. In this section, we first define simplices
and triangulations. Then we define CPA functions and summarize some of their
characteristics such as their constant gradient over each simplex and the relation to
the shape matrices of the triangulation. Throughout this section, we use the same
notation as [12].

Definition 2.1 (simplex). Let (x0,X1,...,X;) be an ordered (m + 1)-tuple of
affinely independent vectors in R™, meaning that >7"; \j(x; —Xg) = 0 = X; =
0Vi=1,2,...,m; in particular, this implies m < n. Denote the set of all convex
combinations of these vectors by

CO(Xo,Xl,...,Xm) = {Z)\zxz :0 S )\1 S I,Z)\l = 1} .
=0 =0

Then the set G := co(xg,X1,...,Xm) is called an m-simplex and xg,X1,...,Xm
are its vertices. A face of the m-simplex co(xo, . ,xm) is a k-simplex, where
0 < k < m, and the vertices of the k-simplex, the face, are a subset of the vertices
of the m-simplex.
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A collection of n-simplices in R™ is called a triangulation if it fulfills the conditions
of the next definition.

Definition 2.2 (triangulation). Let 7 be a collection of n-simplices G, in R™. If
every pair of distinct simplices G,,G,, € T, v # pu, either intersects in a common
face or not all, then we call 7 a triangulation.

We define the vertex set of a triangulation 7 by

V7 :={x € R" : x is a vertex of a simplex in T},
and we say that 7 is a triangulation of the set Dy if

Dr = U Gy.
G,eT

We now recall the definitions of a CPA function, shape matrix and its gradient
from [12].

Definition 2.3 (CPA function). Let 7 = (G,) be a triangulation of a set Dy C R".
Assume we are given a number Py € R for each vertex x € V. Then we can
uniquely define a continuous piecewise affine function P : D+ — R in the following
way:

(i) P(x) := Px for every x € Vr;

(ii) P is affine on every simplex G, € T, i.e. there exists a vector a, € R® and a
number b, € R such that P(x) =alx+b, for all x € G,.

For each simplex G, € T we define VP, := VP|g = a,. We note that VP, is
constant on every simplex G,,.

P(x)

Y

FIGURE 1. The green plot is a visualisation of part of a CPA func-
tion P : Dy — R where D7 C R2. The green nodes represent the
number Py € R that we are given for every x € Vs (which are
represented by the black nodes).
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Definition 2.4 (shape matrices). Let T = (G, ) be a triangulation. For a simplex
G, = co(x§,xY,...,x¥) € T, we define its shape matrix X, € R™*" by
X, = (xf—xg,xg—xlo’,...,xr”L—xg)T. (1)

We refer to the set {X, : G, € T} as the shape matrices of the triangulation T.

Remark 2.5. Recall from Definition 2.1 that x§, x7,...,x} are affinely indepen-
dent. This means that the vectors x} — xg, ¢ = 1,...,n, are linearly independent.
Therefore, the rows of X, are linearly independent so X, is non-singular and has
an inverse.

Lemma 2.6. [11, Remark 9] Let T be a triangulation, P : Dy — R a CPA function,
and G, = co(xf,xY,...,x%) € T. Then the gradient of P on the simplex G, is
VP, = X, 'p where p = (p1,p2,---,pn)T is a column vector with entries p; :=
Pyxv — Pxy fori=1,2,...,n.

For the CPA interpolation of a function f: G, — R we will use the following
well-known estimate, cf. e.g. [2, Proposition 4.1].

Lemma 2.7. Let f: G, — R be twice continuously differentiable and denote by
H(f) G, — R™ " jts Hessian, and by H(f(w)) the value of the Hessian atw € G,,.
For the CPA interpolation of f, i.e. x — Y 1 _o A\ f(X}) where x = > _y ApX}, with
e € 10,1] and Y-} Ak = 1, the following estimate holds

f (Z )\ka> - Z Aef(x5)| < hiB,
k=0 k=0
where h, = maxxyeg, [|x{ — x§l2 and B := maxweg, | H(f(w)) Hz

Note that [|x||2 denotes the Euclidean norm of a vector x € R™ and [|4|2 :=
max||x|,—1 [|Ax||2 for A € R"*" denotes the induced matrix norm.

2.2. CPQ functions: definition. Having reviewed CPA functions, we now intro-
duce continuous piecewise quadratic (CPQ) functions. If we have a triangulation
T = (G,) of the set Dy and we are given a number ry € R for every vertex
x € V7 such that f(x) = rx, then, by Definition 2.3, we can construct a function
P : Dy — R satisfying P(x) = ry for every x € V7 that is affine on every simplex
G,. That is, P is a CPA interpolation of f.

To construct a CPQ function g : D — R, that is continuous on its whole domain
and a quadratic function on each G,, we first add more points x € R™ where we
demand g(x) = rx. For any two distinct vertices x;, x; of a simplex G, € T, we
introduce a new point x;; := (x; + X;)/2 to be the midpoint between x; and x;;
note that x;; = x;;. Let us denote by VgPQ the set containing the vertices Vs of
T and these midpoints.

We will prove in the next theorem that we can uniquely construct a function
g : Dy — R by demanding that g is continuous and quadratic and g(x) = 7«
for every x € V7C—PQ, where the rx € R are given numbers, see Figure 2 (left) for
a schematic representation in one dimension and Figure 2 (right) for the vertices

V7C—PQ of one simplex in two dimensions.

Theorem 2.8. Let T = (G,) be a triangulation of a set Dy C R™. For each pair of
distinct vertices xi,x; of a simplex G, = co{xXg,X1,...,Xp € T, k,1 € {0,1,...,n},
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Tk

Ty Tkl €

X9o = (1, 1)T

xo = (0,0)T  *01 x; =(1,0)"

FIGURE 2. (left) Visual representation of the addition of an extra
‘vertex’ xy; for a one-dimensional simplex. The blue curve repre-
sents a CP(Q function, while the black line is a CPA function. Note
that r 1= ry, and 7y := 74,,. (right) Visual representation of the
addition of extra ‘vertices’ for a two-dimensional simplex.

define xy; = (X + x;1)/2 to be the midpoint of the line segment connecting xy, and

x;. Denote by VgPQ the set of all vertices V7 and all such midpoints, i.e.

VgPQ = {x—;—y : X and y are vertices of some G,, where G, € T} ;o (2)

note x and 'y are not necessarily different.

Assume we are given a value r € R for each x € V$PQ. Define the function
g : D — R as follows: For an x € Dy there exists a simplex G, such that x € G,
and x can be written uniquely as a convex combination of its vertices Xq, ..., Xn

XZZ/\ka, Z)\kzl, and A >0 fork=0,...,n.
k=0 k=0

We define
g(X) = Z AeTE + 2 Z Z )\k/\l(QTkl — Tk — Tl), (3)
k=0 k=0 l=k+1
where 1y, = rx, and vy =1y, fork,1=0,...,n, k#1l.

Then g : D — R is a well-defined continuous function that is quadratic on each
G, and fulfills g(x) = rx for every x € V?PQ.

Proof. We first verify that g(xx) = rg for all x; € V7 and g(xx;) = ri for every
CPQ
Xkl € VT \VT.
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Verifying that g(xx) = rx: Let x; be any vertex of an arbitrary simplex 7 3 G =

co(Xo,...,X,). By Definition 2.1, we know that xj can be written uniquely as a
convex combination of the vertices of G, meaning that x; = > 1 \;x; and we must
have A =1 and all other A\; = 0. Then, it is clear from (3) that g(xx) = rg.

Verifying that g(xg;) = rri: Let xg; be the midpoint of any two distinct vertices

Xk, X; of an arbitrary simplex G = co(xo, . ,Xn) € T, where we assume k < [
without loss of generality. Again using the property that since xi; € G we can
write xj; uniquely as a convex combination of the vertices of G and we must have
A = N = % and all other A\; = 0. Then, it is clear from (3) that g(xu) =
%Tk + %T’l + 2[%(27’]61 —Tr — 7”[)} = Tk

To show that g is a quadratic function on each simplex, we refer to Remark 2.12,
which shows that the Hessian of g is constant on each simplex G and thus g is
quadratic.

Finally, we show that ¢ is continuous. By Definition 2.2, we know that simplices
either intersect in a common face or not at all. Assume that G, and G,, are two
distinct simplices that intersect in a common face. This means that on this face
they share the same vertices. Therefore, the CPQ function defined on this face will
be the same for both G, and G,,. Hence, g is continuous over the whole domain
D+ since it is continuous on each simplex and on the shared common faces between
neighbouring simplices. O

Remark 2.9. Consider a function f : Dy — R and fix r := f(x) for every
X € V7C—PQ. We note that a CPA function P that interpolates f at the vertices
X), € V7, Le. P(x) = f(x) for every x € Vr is given by P(x) = Y__, \pri with the
notation from Theorem 2.8. Comparing this with the CPQ function g defined in
(3), we observe that g contains the CPA function P plus some additional quadratic
terms, i.e.

n n
g(X) = P(X) + 22 Z )\k/\l(Qrk’l — Tk — ’I"l) on G,.

k=0 l=k+1
2.3. CPQ functions: useful formulas. In Subsection 2.1, we defined for every
simplex G, of a triangulation T the gradient V P, of a CPA function P, and provided
an explicit formula to calculate it. We will now derive formulas to compute the
gradient and Hessian of a CPQ function g for every simplex G,. Similarly to the
formula given in Lemma 2.6 for VP, we will observe that both of our formulas for
the gradient and Hessian on G,, of a CPQ function will involve the simplex’s shape
matrix X,,. Note that the components of the gradient of g are CPA functions and
the Hessian of ¢ is constant on each G, .

We proceed in the following way to derive the gradient Vg, , where the notation
g, denotes the restriction g, := g’ G of g to G,. We compute the directional
derivative of g, (X) in direction (x; —Xg) in two ways: we first use the representation
of x + h(x; — X¢) and take the derivative of g, (X + h(x; — Xo)) with respect to h,
and then set h = 0. On the one hand, we use the chain rule to compute the same
derivative. For the Hessian H,, we proceed similarly and compute the derivative
of %gu (x + h(x; — xo)) with respect to h for some fixed ¢ € {0,...,n} and j €
{1,...,n}.

We give a formula for the gradient in the following proposition.

Proposition 2.10. Let T = (G,) be a triangulation of a set D C R™ and g : Dy —
R be a CPQ function over this set. Then, for each simplex G, = co(Xo, . ..,Xn), the
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gradient of g restricted to G, is given by the formula

V. (x) = X, 'b(x) (4)
for all x € G,. Here, X, is the shape matriz of the simplex G,, see (1), and
b(x) = (b1(x),..., bn(x))T is a column vector with entries given by (5)

Z )\ij = Z )\jbi(xj) with bi(Xj) =79 —7T; + 4Si(Xj) — 4t(Xj),
; i=o
(5)

where x = Z?:o AjX; with Z?:o Aj =1 and \; € [0,1], is the unique representation
of X as a convex combination of the vertices of G,,

. iP5 j ) j ) j 0
s'(x;) = " j 7 Z and t(x;) = "0j J 7
! T4, J=1 ! To, J= 07

and the ry, Ty are defined by (3). Note that the bi(x;) are linear in the ry and 7y,
where k,1=0,1,...,n and k # (.

Proof. Consider an arbitrary simplex G, € 7. For any x € G, = co(Xg, X1, ..,Xn),
we write x = Y7 A;x; with \; > 0 satisfying >37_ A; = 1. Therefore, for any
fixed ¢ € {0,...,n} and x € G,,, we have that

i—1 n
X + h(Xl — Xo) = ()\0 — h)XO + Z )\ij + ()\7, + h)XfL + Z )\ij. (6)
Jj=1 j=i+1
By (3) we have
v (X + h(x; —%0)) = (Ao = B)ro + Y _ Ari + (i + B)r
i
+ 22(/\0 - h))\l(27‘01 —To— 7‘1)
iz
+2) (N + )N (2ri — i — 1)
iZi
+ 2()\0 — h)(/\z =+ h)(Z’I“Oi — 79 — T‘i).

Now we take the derivative of g, (x + h(x; — XO)) with respect to h. Using that
TR = 1 for any i,k € {0,...,n}, i # k, we obtain

d
agy (x + h(x; — xo))

d n
:@ ()\0— T‘o-l—Z)\lTl-f— )\‘f’h +*[2Z )\z 27’0[—7“0—7‘1)

=1
l;éi l#1
+23 (i + R)N(2ra =i = 1)+ 2(h0 — h)(Ai + h)(2roi — 10 — 74)

=1
1Zi
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ri—ro =23 N(2ror—ro—m)+2Y N(2r —ri =)
i i
—+ 2()\0 — >\z — 2h)(27”‘01 — 7o — T'i)

=7r;, — 719+ 2()\0 -\ — 2h)(27"0i — 719 — Ti) + 22 |:/\l(27’li —r; —2rg; + 7’0):|.
=
Letting h = 0, we have, using > A\; = 1, which implies that >~ A\, =1—Xg — A;
=

ig,, (x + h(x; — X0)>

dh h=0
n

=r; —Tro+ 2(/\0 — )\i)(QTOi — 79 — 7‘1') + 2 Z [)\5(27“” —r; —2rg + 7“0)

iZ
=1 — 10+ 2(Xo — Xi)2r0; +2(Xo — Xi) (=10 — 13)

+2) N(ro—ri) +4) Ni(ri —ror)

=1 =1
1#1 l#i
= (’I“i — 7’0) |} — 22 A |+ 4Xoro; — 4Niros
iZ
— 2()\0 — )\i)(ro + Ti) + 42 )\l(rli — 7”0[)

i
= (Ti — ’I"()) [1 — 2(1 — )\0 — )\z)] + 4)\07"01‘ — 4Aﬂ’0i

— 2N — A)(ro+ 1) 4> N(ri — ror)

=1
I#i

(7’7; — 7"0)(71 =+ 2)\0 =+ 2A1) =+ 4)\01"01‘ — 4Aﬂ’0i

=20 = A)(ro + 1) +4 ) N(rii — ror)

=1
1#i

=T —7T; + 2(>\0Ti — )\QT‘Q + )\/L"I"i — )\iTO) — 2(/\07"0 + )\07"2‘ — )\7;7’0 — /\ﬂ’i)
n
+ 4dXgro; — 4o + 4 Z Mi(ri — Tor)

=1
1#i

=19 — 1 — 4Xoro + 4Xiri + 4Aor0; — AAire; + 4 Z (T = Tot)
=1
I#i

n
-4 [Z Airor + Airoi + AoTo
7

n
=rog—r;+4 Zkzm + Xoroi + Airi

=1
1#i
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—4 [Z )\l’l“()[ + /\07’0

=1

Z T+ AT

1=0
1#£i

:To—Ti+4

by (5). We also have by the chain rule that

bi(x) = %gu (x + h(x; — %))
h=0

= (Vg, (x)X})
h=0

oo (D

"0
= Z ggy (X —+ h(xt — Xo))(Xi — Xo)j
j=1 """

where (VQE(X)XE)i denotes the i-th column of the vector in R1*" and X,, is the
shape matrix of the simplex (see Definition 2.4). Therefore, we obtain

b(x)" = Vg, (%)X, = Vg, (x) =b(x)"X; " = Vg, (x) = X, 'b(x),
which shows (4). O

We now give a formula for the Hessian in the following proposition.

Proposition 2.11. Let T = (G,) be a triangulation of a set Dy C R™ and g :
D7 — R be a CPQ function over this set. Then, for each simplex G, , the Hessian
of g, == g|g is the constant matriz

H, = X, 'H, (8)

where X, is the shape matriz of the simplex G, see (1), and H e R™*" is a matriz
with entries given by (9)
]Nlij = Z(X;l)ﬂc [4(7‘0 + ik — T0i — T'Ok)} + (X;l)ji {4(7‘0 + 7 — 27r0;) (9)
Wi
and the ry, ri are defined by (3).

Remark 2.12. We stress that the matrices H, and H are both independent of x
and therefore constant, showing that the function g, is quadratic.

Proof. From (4), we have that

aing(X) = 3 (XY (), (10)

k=1

where (X, !);; is the entry in the j-th row and k-th column of X!, and by(x) is
the k-th entry of b.
From (5), we have that

n n
br(x) =ro—r + 42 NsP(x;) — 42 At (xy).
1=0 1=0
Now replacing x by x + h(x; — x¢) and using (6) so that A\g becomes A\g — h and
A; becomes \; + h, we can find a formula for by (x + h(x; — xo)) in the following
way.
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Case 1: k=1

b; (X + h(x; — Xo)) =7ro—T;+ 4[(}\0 — h)ro; + Z A+ (N + h)?“z}
=1
12
—4 {()\0 —h)rg + (A + h)ro; + Z )\l’l“()l] .
=1
12
Therefore, when k& = i,
d
dh |: (X —+ h,( — XQ))i| = 747"01' + 47‘1' + 47‘0 — 47’0i
= 4rg + 4r; — 8rg;.
Case 2: k #1

b (X + h(Xl — Xo)) =rg—TL + 4{()\0 — h)TOk -+ ()\1 —+ h)Tik —+ Z N + )\krk]
71
12k

— 4[()\0 — h)’l“o + (/\i + h)’l“()i + ; )\lTOl] .
12i

Therefore, when k # 1,
d
dh {bk (X + h( ;i — Xo))} = —4dror + 4r; + 4rg — 4drg; = 4(—7“0k + 7k +To — TOi).
Now we take the directional derivative with respect to (x; — xg), using (10):

i L b e =)

—Zdh{ kb (x4 hoes = x0) |

- Z S swap [ i = x0))]

= (X )ik Aok + 7+ 70 — r00) ]| + (X5 1) (47 + 4ri — Sron).

see (9), which is independent of h.
By the chain rule, we also have that

i[ig (x + h(x; —xo))} = z": 8729 (x + h(x; — x0)) (x; — X0)
dh Loz; 7" ’ — 0140z v ’ ’ e

—Z[ (90 (x + b = x0)] (xi = x0)g (12)

q9)
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Denote by hg; the entry in the g-th row and j-th column of the Hessian H,, .
Then, from (11) and (12) and with h — 0, we have that

hij =Y hqj(xi =%0)g = H" = HJX]
qg=1

=H) =H"(X;")
=H,=X,'H
which shows (8). O

3. Computation of Lyapunov functions for SDEs using CPQ interpola-
tion. We are interested in using LP to parameterize CPQ functions that are non-
local Lyapunov functions for stochastic differential equations (SDEs). Lyapunov
functions are often used to analyze the stability of a dynamical system’s equilib-
rium as the existence of such a function cannot only imply the asymptotic stability
of an equilibrium, but also provide some information regarding its basin of attrac-
tion, cf. e.g. [9, 19, 20, 21, 26, 30, 33]. The idea of non-local Lyapunov functions for
SDEs is to use linearization to obtain a local Lyapunov function close to an equilib-
rium and then obtain stronger stability guarantees by combining it with non-local
Lyapunov functions. We will not discuss the theory further here, but refer the
interested reader to [15].

We first summarize some basic theory regarding SDE of Ité type from [7] and
[13]. We will see that a Lyapunov function V for an SDE satisfies an inequality
involving its gradient V'V (x) and Hessian H(V (x)). Since the Hessian of a CPA
function is zero, CPA functions cannot be used as Lyapunov functions for an SDEs.
However, we will prove that a CPQ function V' can be used, provided that V satisfies
certain conditions at every vertex of the triangulation. The method we use to prove
this is similar to that used in the proof of Theorem 2.6 of [10], and all definitions
in Subsection 3.1 are from [7]. The important part is that these conditions can
be formulated as linear constraints in the variables of a linear programming (LP)
problem. Hence, we can use LP to compute non-local Lyapunov functions for SDEs.
The LP program is given in LP Problem 3.5 and in Theorem 3.4 we prove that a
feasible solution to the LP problem delivers a non-local Lyapunov function for the
SDE in question. The LP problem is a feasibility problem and the objective of the
LP problem is not needed. In Example 4.2 we show how the objective can be used
to force some conditions on the computed Lyapunov function.

3.1. Stochastic Differential Equation. We first define the SDE that we are
considering; note that these are differential equations whose solutions are random
processes. The interested reader can find further information regarding SDEs in
[22, 27, 28].

Definition 3.1 (SDE of Ito6 type). A stochastic differential equation of It6 type is
of the form

dX(t) = £(X(t))dt + g(X(t))dW (), (13)
where W(t) is a Q-dimensional Wiener process, and f : R® — R™ and g : R"” —
R"*@ are Lipschitz continuous.

We will assume that £(0) = g(0) = 0 such that X(¢)=0 is an equilibrium. We
want to learn more about the stability of the equilibrium X(¢)=0 of such systems,
in particular its y-basin of attraction which we define below.
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Definition 3.2 (y-basin of attraction). Consider the stochastic system given in (13)
and let 0 < v < 1. The ~-basin of attraction is the set of all initial conditions x
such that their trajectories will converge to the equilibrium as time tends to infinity
with a probability of at least . It can be represented by

7-BOA = {x e R" : P lim |X*(1)| = 0) = 7},
— 00
where X*(¢) denotes the trajectory of the SDE with initial condition x.

Definition 3.3 (Non-local Lyapunov function for SDE). A non-local Lyapunov
function for a stochastic differential equation (SDE) is a function V : U\ M C
R" — R, V € C?(U \ M), where U and M are neighbourhoods of the origin,
U D M, and M denotes the closure of M, satisfying

LV(x) := VV(x) - f(x) + % > [g(X)g(X)T}

Vx € U\ M, where H(V(x)) is the Hessian of V at x.

Typically U is a large neighbourhood and M a small one. The stability properties
of solution trajectories in M are taken care of by a local Lyapunov function that can
be computed by linearizing f and g around the origin [6]. The stability properties of
solution trajectories in U are then taken care of by the non-local Lyapunov function
[15]. We will only discuss the non-local Lyapunov function here. If a local Lyapunov
function is given and LV (x) < 0 for all x € U\ M, then it follows by Theorem 2.5 of
[7] that we can find a subset of the y-basin of attraction of the origin. Therefore, we
are interested in determining what conditions we must impose on a CPQ function
V such that LV (x) < —C, where C' is some positive constant. Then, by Definition
3.3, V is a non-local Lyapunov function for the SDE.

To enhance the readability we first derive several estimates in the next section,
before we state our LP problem in Section 3.4 and prove that a feasible solution to
it delivers a non-local Lyapunov function in Theorem 3.4.

3.2. Some useful estimates for the LP problem. Consider the stochastic
differential equation given in (l?i We want to determine under what condi-
tions a CPQ function V' : U\ M C R"™ — R is a non-local Lyapunov func-

tion for the SDE. Assume U\ M is triangulated by 7 and let us consider an
arbitrary, but fixed simplex G, € T. To derive error estimates we first con-

sider a quadratic function V' : G, — R. Denote Fi(x) := VV(x) - f(x) and
Fy(x) =30 [8(x)g(x)T] Y [H(V(x))]lj Then LV (x) = Fy(x) + 1 Fb(x). We
know we can write any x € G, as x = EZ:O X where the x;, are the vertices of
Gu, A\ > 0 and >}, A\p = 1. Therefore,

Fi(x) + 2F2 (ZN&%) + Fz(ZM&%)
= Z)\kFl(xk) + F1 (ZA;@%) — iAkFl(xk)
+ = ZAkFQ Xi) + Fz(Z/\ka> - *Z)\sz X1)

k 0 k=0



PIECEWISE QUADRATIC LYAPUNOV FUNCTIONS 13

< Z)\kFl Xk <Zx\kxk> — Z}\kFl(Xk-)
k=0 —
+ = Z)\kFQ Xk (Z)\kxk> - Z)\kFQ(Xk)
k 0 k=0

Note that we have added and subtracted the CPA approximations of Fj(x) and
F5(x) in order to bound LV (x) above by the CPA error estimates that we calculated
in Section 2.1.

Recall that by Lemma 2.7 we have ‘Fj (D ho MeXk) — > r_o )\ij(xk)‘ < hZBj,

H(F;(w))| for j = 1.2,

where H(F;(w)) is the Hessian of F; at w. To simplify calculations, we bound the
matrix norm ||Alls = maxy|,—1 [|Ax[|2 above by the max matrix norm [|A|max :=
max; j=1,.n |@;;|. Then,

where h, = maxy,cg, ||Xi — Xo||2, and B; = maxweg,

e [B(E ), < n e [ (B )|
and we obtain,
R+ R0 <30 [Py xe) + 5 Paloxe)] + 12 (B +%)
1 9 2 >~ - k 1 k 2 2 k v 1 2

k=0

< kZiO/\k [F1(Xk) + %Fz(xk)} + hgmgvlgg HH(Fl(W))’

max

g (0|

+ % (14)

max

for j =1,2.

We now calculate upper bounds on maxxeg, HH(F](X))‘
max

Calculating a bound on maxxeg, HH(F1 (x))‘

max

The (i,7)-th entry of H(Fl(x)) € R™*™ ig given by %2%}9(;?. For fixed 4,5 €

{1,...,n}, we have for any x € G,

32F1(X) . (92
61‘1'633]‘ B 83@,»83@ VV(X) ' f(X)

aacl@acj (Z Omk )
) [ OV (x) 0fi(x) , 9V (x), (X)]

- o0x; Oz Oz O0x 0z, k

Z x) O£ (x) n 0%V (x) ofy(x) n 0%V (x) Ofy(x)
o 8Ik 6:61893] 89:18@ 8:1:j 8$]axk 6:61 ’

where we have used that V is a quadratic function on G, .
Then, with A2 := maxxeg, [|X — Xol/co, We get

e [EL(700)

max
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n

Z IV (x) 0*fx(x) N 0%V (x) Ofy(x) N 0%V (x) Ofx(x)

|

XE€G,

x€G, | ig=lm | = Oz Oxi0x; = Ow0ry, Ox;  Ox;0up O
¢ o[§ e LT Pt Prence]
< e d | (o 52 (e oo, )
+<i,pr£1%).§7n [H(V(X))LP><“}}3?_{_7" [Dfp(X)L>
+<j)pg%§7n [H(V(X))LP ) <i,pﬂlﬁ_’f,n [Dfp(X)L )1
< mg [oveo] - max [r@EE)]
+2HH(V(X))‘ o HDf(X)‘ max}
< n[mgx VV<x>Hoo-§g>5<pzqﬁ?in H<fp(X>>’max>
o [0 or], )]
< nKHVV(XO)HOO+nh§° max H(V(X))’max> - max <p1111§3{n H(fp(X))!

+2 max
xXEG,

- max
max X€EG,

H(V (x)

Df(x)‘

max]

—. v
- E17

max)

(15)

where f,(x) is the p-th entry of the vector-valued function f, H(f,(x)) is the Hessian
of the p-th entry of f, and Df,(x) is the vector whose j-th entry is [Dfp(x)]j =

o, (x)

Bz, We also used that

[vveall, ~Ivvew], <[[vveo -vveal],

= | [ (Vo i) b ]|

H(V(w))

< hy? m%x
weg,

oo

< nh;° max
weg,

H(V(w)|

max

Calculating a bound on maxyxeg,

H(Fg(x))‘

max

9% F(x)
0T 0Ty, *

We note that H(F»(x)) € R™*" where its (I,m)-th entry is

Recall from
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Remark 2.12 that H(V/(x)) is constant and therefore its derivatives are zero. Then,
for fixed I,m € {1,...,n}, we have for any x € G, that

) e [ 32 s [0 )

0 Q (x k(%) | OV (x
_% Zkz:: Ogi( )gjk(x)Jrgik(x)agaj;i)>gx‘ja($j

n Q
_ d*gir(x) Ogir(x) gk (x)
=2 Z(gjuxw S

+ 8ik (X) anjk(X) ) aQV(X)

E)xlaxm 8:518% '
Then,

max
x€G,

0xm ox;

XQ: (azgik(x)gjk(x) i Igik(x) 0g;k(x)

1,j=1 k=1
Ogir(x) Igjn(x) |, Pgi(x) | PV (x)
ox; 0xm +gik(x) 0x10zy, | Ox;i0x;
n Q
PV (x) gir(x) Igik(x) Ogjr(x)
< . .
= o [ JZ_I ; 02:0x; | Lm=i.n | 0210 &k () + =5, o
Ogix(x) Og;r(x) | 0’gik(x)
Ox; 0%, + gir(x) 0x10Zm,
n Q
<
)I;Iéa‘g)j 7;;:21 ; y4 Tllllafs.n |:H (V(X))] pr

+ (P mrEaX n {Vgpq(x)}mD (Tlr—nax n [Vgrq(x)}li>
a=1,...0 a=1,..Q

(e [[wme] ) (e ([ws00], )
a=1,...0 a=1,..0

,,,,
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n  Q
| 23 0w (2, e G|

.....

max max

= H H | |
< 20°Q max |[H(V () ﬂ%( pex, [ Hgn ()|l | maxlsa
q=1,...,Q
2
+ max [ max Vgpq(x)H =: B, (16)
x€G, p=11,~~,g S
¢=1,...,

where g,,(x) is the (p,¢)-th entry of the matrix-valued function g, H(gpq(x)) is

the Hessian of the (p, ¢)-th entry of g, and Vg,,(x) is the vector whose m-th entry
. 1¢) X
18 [Vgpq(x)}m = %Ti)

Substituting (15) and (16) into (14), we get

Fi(x) + 1F2 < Zkk[Fl xg) + 1F2(xk)] +nh2 (E1 + 1E2>

Denote E” := nh2(EY+EY/2). Assume that LV (x)) = Fi(xg)+ 3 Fa(xz) + E¥ <
—C for every vertex x of G,, where C is some positive constant. Then

Fi(x )+2F2 Zxk{ﬂ xk)+2F2(x,c}+E” Z_: C=-C<0
for every x € G,,.

We now consider how to implement the error term E* as linear constraints in
the values of V' at the vertices xj. Let us first rewrite

max (FH;aX HH(qu(x))\

Y xeq, =1,...,n

EY = HVV(XQ)H -n?h?% max < max
o0

+ max
x€G,

H(V(x)|

g(x) ’
max max

.....

q=1,...,Q

n?h? {nQ

max
max | xX€G,

x) max] } . (17)

Now note, that VV(xg) is a vector, whose components are linear in the values of
V at x; and x;; by Proposition 2.10 and H” := H(V (x)) is a symmetric n x n
matrix independent of x € G,,, whose entries are also linear in the values of V" at the
vertices xj and X by Proposition 2.11. All the other terms in (17) are constants
that can be computed or bounded by the problem data, i.e. the functions f and g
and the simplex G,,.

The maximum of absolute values is easily modelled by linear constrains, i.e.

H(f,(x))|

+ nh° max max
x€G, \ p=1,...,n

2
+ max max HV X H
x€G, (17 % gpq( ) [e’e]

q

+ 2max || Df(

xE€G,

max{|a1|,|az|,...,Jax]} <A & —-A<a; <A fori=1,2,... k.
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Hence, if N, and P, are variables such that
|9V, <N and B, <P (19

and C} and C? are constants such that

CV > n?h2 ){Ié%X( max H(fp(x))‘max> (19)
and
{2 A | |
C—h{Q[mg< max [ Hgn ()] | max|jsG)]
q= 17
2 o0
(s HV%X)HOO ah ma wa [R(EG)]
:1, Q
2 Df ‘ : 20
M m]} (20)
then

VV(xz) - £(x1) + % i [g(xk)g(xk)T]in;’j +C{N,+CiP, < -C (21)
i,j=1
for every vertex xj of G, implies that
VV(x) - £(x) +% 3 [s0e)], [HV )], < ~C (22)
ij=1
for all x € G,. In the next section we assume we have a CPQ function V defined
on Dy = U \ M, such that its restriction V‘gu to each G, € T fulfills (21), and we

will show that if VV is continuous, this implies for every compact K C (D7)° and
every 0 > 0 the existence of a non-local Lyapunov function V; : K — R, such that
[Vo(x) = V(x)| < § for all x € K.

3.3. Non-local Lyapunov function from a CPQ function. Assume V is a
CPQ function defined on Dy = U \ M and for every G, € T denote by V,,: G, — R
its restriction V| to G,. Then, by (5) of Proposition 2.10, the components of
VV,(x) are affine for every G, € T. It follows that if

YV, (x) = VY, (x), (23)

whenever x; = x/ is a vertex of both G, and G, in T, then VV: Dy — R”,
VV(x) := VV,(x) if x € G,, is a well-defined and continuous function. Indeed,
each of its components [VV],, ¢ = 1,...,n, is a CPA function on the triangulation
T. Hence, we can force continuity of VV by using the constraints (23) in an LP
program. We come to the main theorem of this section:

Theorem 3.4. Assume V is a CPQ function defined on Dy = U \ M that fulfills
(23) and such that its restriction V|QV to each G, € T fulfills (21). Let § > 0 and
K C (D7)° be a compact set. Then, for all sufficiently small € > 0, there exists a
non-local Lyapunov function V.: D2 — R such that |V.(x) — V(x)| < § for every
x € D5, where

Dy :={x€Dy: B.(x) CDr} D K. (24)
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Proof. Define ¢ : R* — RY, ¢(x) := C*exp(—1/(1 — ||x||2)) for ||x|]2 < 1 and
¢(x) := 0 otherwise and choose the constant C* such that [, ¢(y)dy = 1. For
€ > 0 define o(x/e)

~ x/e

(%) := o
Define V. := V x ¢, ie., V.(x) = fDT V(y)qza(x —y)dy. It is well-known that

Ve, (Ea € C*°(R™) and that V. and VV, approximate V' and VV uniformly on D*,
i.e.

sup max{|Vz(x) — V(x)|,[|VVz(x) = VV(x)|2} =0 as e —0T.

xeDLE

By [18, Lemma 4.13] we have for € > 0 and x € D;° the formula
H(V.(x)) = Za’u"EH”, where oy 1= / be(x —y)dy. (25)
> G.NB:(x)

Note that the nonnegative numbers o ° only depend on x and € > 0 and not on
V, and they sum to one for every x € D;*; the sum ), denotes that we sum over
all v such that G, € T.

Now, for a given § > 0 and compact K C (Dy)°, and the constant C > 0 in (21),

choose € > 0 so small that K C D5,

C
Ve(x) = V(x)[ <4 and  [[VVe(x) = VV(x)[2 - [If(x)ll2 < o
for every x € D7°. Then, for every x € D;° we have
1 n
VY0 106+ 3 [a0g00"], (B 00)],
1,)=
= [VVa(x) = VV(x)] - £(x)
X, 1 - v
+ Zal,’ |:VV(X) f(x) + 3 ‘Zl [g(x)g(x)T]ij H L]}
v )=
C C
<Z_Cc=-=
<5 C 5
which concludes the proof. O

For V. to strictly fulfill the conditions in Definition 3.3 one can choose open
neighbourhoods U’ C U and M’ D> M of the origin with M’ C U’, such that
DFFDOU'\M'DK.

3.4. The LP problem.

Linear Programming Problem 3.5. Consider the SDE (13) and assume that
two neighbourhoods U, M C R™ of the origin are given, M C U, together with a
triangulation 7 of U \ M. The variables of the LP problem are Vi € R for every
x = (x{ + x7)/2, where x} and x} are vertices of a simplex G, € T. Note that
with i = j the formula x = (x} + x})/2 includes the vertices x € R" of the simplex
G, € T. These values correspond to the values r; and 7;; needed to define a CPQ
function on 7. Further variables are NV, € R and P, € R for every simplex G, € T
and B € R to separate values of V on QU from those on OM. Recall that the
components of VV, (xY) and H; are linear in the variables Vi by Propositions 2.10
and 2.11, respectively.
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The constants of the LP problem are C' > 0, d5 > 0, and C7 and C¥ as defined
in (19) and (20) for every v such that G, € T. The constant C' > 0 is used to force
LV to be negative and the constant dg > 0 is used to separate values of V on U
from those on M. Both are typically small, e.g. 10~%.

The constraints of the LP problem are:

e For every v such that G, € 7 we demand

[Vl <% and [E,, <P 20
e For every x = x; = xJ,

G, €T, we demand

where x! is a vertex of G, € T and xJ is a vertex of

VV,(x7) = VV,(x}). (27)
e For every G, € T and every vertex xj of G, we demand
v v 1 . v v\T v v v
VV,(x;) - f(xx) + By Z [g(x})g(x}) ]inij +C{N, +C5P, < —C. (28)
ij=1

The next two constraints are used to let V' take lower values at the inner boundary
than at the outer boundary of U \ M:

e For every x = x¥ € OM, where x¥ is a vertex of G, € T, we demand

Vi < B — 43, (29)
and for every x = x¥ € 0U, where x¥ is a vertex of G, € T, we demand
Vx > B + 0. (30)

Let us discuss the constraints of LP Problem 3.5 and their significance.

e The constraints (26), see (18), are used to obtain upper bounds N, and P,
on ||VV(X0)HOO and ||H”Hmax, respectively, that are used to bound the inter-
polation error in constraints (28).

e The constraints (27), see (23), are used to force VV to be continuous.

e The constraints (28), see (21) and (22), ensure that LV, < —C on each
simplex.

e The constraints (29) and (30) are used to let V take lower values at the
inner boundary than at the outer boundary of U \ M. This is useful because
the level sets of a non-local Lyapunov function are needed to make stability
guarantees. Note, however, that Vi < B — §g for all vertices at the inner
boundary M of U \ M does not necessarily imply that V (x) < B — §, for all

x at the inner boundary OM of U \ M as V is a piecewise quadratic function,
nor analogously for the outer boundary. Hence, the level sets of the computed
V need be checked a posteriori.

Altogether, these constraints imply with Theorem 3.4 the existence of a non-local
Lyapunov function.

4. Examples. We demonstrate our method for two systems from the literature.
We implemented the method in C++ and used the linear solver Gurobi to solve
the resulting LP problems. Both examples were solved in less than 20 seconds on a
normal PC running on Linux Mint 20.1.
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FiGURE 3. The triangulation used to compute a non-local Lya-
punov function for system (31).

4.1. Two-dimensional System. Consider a harmonic oscillator
Z(t) +vz(t) + ka(t) =0,

where the damping v and the intensity of the force x fluctuate randomly (white
noise). This system has been studied in [22, Example 6.6] and [17]. In state-
space form this can be modelled with the two-dimensional linear SDE, denoting

!

where W and W5 are independent one-dimensional Brownian motions,

0 1 0 0 0 0
a= (0 L) m=( ) me= (0, 0)

and the constants o1 and o, determine the intensity of the fluctuations v and &
respectively. For our method the simple form of the SDE, i.e. linear with constant
coefficients, is not an advantage. However, this means that the stability of the origin
for the system is more tractable with classical methods.

We fix the parameters of the problem as k =1, vy = 0.1, 01 = 0.3, and o2 = 0.5.
One can verify that there does not exist a symmetric and positive definite P € R2*2
such that ATP + PA + BY PB, + BT PB, is negative definite, which implies that
there does not exist a quadratic Lyapunov function V(x) = x Px for the system
assuring mean-square stability of the origin. This implies by [1, Corollary 11.4.14]
that the origin cannot be mean-square stable. However, using

dX = AXdt + ByXdW; + ByXdWs, (31)

CY =0 and C¥ =n?h2[nQmax(c},o3) + 2max(1, |x|, |y|)] = 123,

see formulas (19) and (20), and the triangulation shown in Figure 3, we were able
to compute a non-local Lyapunov function for the system using the LP Problem
3.5. The Lyapunov function is depicted in Figure 4.
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FIGURE 4. Non-local Lyapunov function for system (31).

4.2. One-dimensional System. We consider the non-linear system

. 3X
dX = sin(X)dt + de (32)

from [7], where W is a one-dimensional Wiener-process. Note that the deterministic
part of the system, i.e. & = sin(x), has an unstable equilibrium at the origin. Hence,
it is an example of a system with an unstable equilibrium which is stabilized by
noise. Since f(x) = sin(z) and g(z) = 3z/(1 + 2?) are odd functions, it is enough
to compute a non-local Lyapunov function V for > 0, because it can be extended
symmetrically V(z) = V(—z) to x < 0. The one-dimensional simplices of the
triangulation of [0, 8] we used for our computation were [x;_1, z;] with z; = -8/2400
and i = 4,5,...,2400. We used LP Problem 3.5 to assert LV (z) < —C with
C=10"" on [1‘3,1‘2400] = [001, 8] and V(1‘2400) — V(mg) >20p=2- 10~

Since the LP Problem 3.5 is a feasibility problem, and the objective is not needed
to compute a non-local Lyapunov function, we experimented with an objective. For
this we added to the original LP problem the auxiliary variable D and the additional
constraints: for every simplex G, = [¢¥_;,zY] we demand for k =i — 1,7 that

14 14 1 - v 14 1% v v
VV,(xf) - £(2f) + 5 Z [g(zi)g(z)"] ,;Hij —CIN, —C3P, > -C—D. (33)
i,j=1
The objective of the LP problem was then to minimize D. Hence, with a similar
argumentation as (21) to (22), from a feasible solution we get a V € C*([0.01,8])
that fulfills
—-C-D<LV(z)< -C

except (possibly) at the points x;, i = 3,4,...,2400, where LV might not even
be defined. Hence, the objective and additional constraints force the computed
non-local Lyapunov function to have LV (z) very close to zero. In our example, we
obtained a value of D = 8-107".
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FIGURE 5. Non-local Lyapunov function for system (32).

The computed Lyapunov function is qualitatively the same as the one computed
in [7] by numerically solving LV (z) = —10~2 using collocation with radial basis
functions. However, as we manage to keep LV (x) closer to zero, the level-sets are
slightly larger, which results in the asserted «-basin of attraction to be larger. Fur-
ther, note that our computed function delivers a true non-local Lyapunov function
V. automatically by construction, whereas the function computed in [7] had to be
rigourously verified by evaluating it at 750 million points. Hence, the computa-
tional time is shortened to seconds in our new method from hours needed for the
verification in [7].

5. Conclusion. We have developed a linear programming (LP) problem to com-
pute continuous piecewise quadratic (CPQ) non-local Lyapunov functions for sto-
chastic differential equations (SDEs) with an equilibrium which is asymptotically
stable in probability. As the Lyapunov function of a SDE must satisfy an inequal-
ity involving a second-order differential operator, one cannot employ continuous
piecewise affine (CPA) functions.

We have provided explicit formulas for the gradient and Hessian of CPQ functions
over a simplex, which, similarly to the gradient of a CPA function, involve the
simplex’s shape matrix. By enforcing continuity of the gradient, the CP(Q function
can be mollified with arbitrarily close level sets. We have applied our method to
two systems from the literature and have used the proposed LP problem to compute
non-local Lyapunov functions for these systems.

In the future, we plan on making our software to compute CPQ Lyapunov func-
tions for SDEs more user-friendly and publish it in a public repository.
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